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Abstract

While scientific applications can gather consistent data from the natural world, psychological,
sociological, and even economic applications rely on data provided by people. Since the majority
of machine learning is aimed at improving the lives of people, human input is essential for useful
results. In this paper, we explore datasets where input and target attributes are provided
by people taking surveys. Every survey dataset, generated from human input, is reliable and
self-consistent according to Cronbach’s Alpha. One expects a reliable questionnaire to provide
effective data for learning. It is this expectation that our analysis finds false, when applied
to supervised learning. Both statistical analysis and application of several supervised learning
architectures, with a focus on neural networks, are utilized to provide insight into data gathered
through human input.

1 Introduction

Whether the economy, political events, product evaluation, or medicine, researchers use empirical
data to solve problems. Psychologists use surveys to aid in diagnosis and checkups. Workplaces
use them to screen potential employees. Websites gather survey data to enhance services and
recommend the right products to the right people.

Our exploration begins with questionnaire surveys [1]. Our data preprocessing is simple, to
focus on the consequences of human input in data. The person writing a survey designs questions
with their own ideas of meaning and purpose. The people taking this survey each have their own
unique interpretations of the questions, which can differ greatly from the intentions of the designer
and other survey takers. Hence, a survey that is singular when designed, is numerous when observed
by different people, resulting in a fascinating problem of noisy and inconsistent data [2, 3, 4, 5, 6] for
processing and machine learning methods. The issues mentioned are not inherent to this medium,
but rather a consequence of the complexities of people.

Noise comes from many sources, of which human input is only one. The prevalence of this
problem has lead to much investigation by researchers [2, 4], and a number of techniques to mitigate
the issue [5, 6, 7, 8, 9, 10]. Noise falls into two primary categories: label, or target, noise [2] and
input noise. Target noise occurs when the target associated with an instance is wrong. In scientific
applications, this most commonly occurs when an instrument malfunctions or an investigator makes
a mistake. When targets are provided by untrained professionals, as in our surveys, this is far more
common. Input noise is similar, and occurs when the inputs of an instance are wrong. How many
inputs are wrong, and the degree of difference between the correct and observed inputs, determine
the degree of input noise. Sources of input noise are similar to those of target noise.
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Despite the noise generated, human input is essential for many applications. All subjective data
must be gathered from people. Relying entirely on objective measurements is often impractical or
impossible. Furthermore, the convenience of surveys with modern technology make them a staple
of empirical data methods [11, 12, 13]. With the Internet, one can quickly connect with thousands
of individuals willing to participate in a survey. With web technology, the collection of survey data
can be largely automated.

The paper is structured in seven sections: next we focus on the state-of-the-art. The supervised
learning architectures used in our exploration are detailed in Section 3. Included is a multilayer
perceptron (MLP), a radial basis function network (RBF), a probabilistic neural network (PBNN),
and a random forest classifier (RF). In Section 4 we present the surveys used in our experiments.
Section 5 provides statistical analysis, to directly explore the nature of the data. Cronbach’s alpha
verifies the reliability of the surveys employed, and a k-nearest neighbors based noise cleaning
method examines noise and consistency of the datasets. To explore the viability of these datasets
for supervised learning, the architectures given in Section 3 are benchmarked in Section 6. Finally,
Section 7 presents our conclusions.

2 State-of-the-Art and Applications

Many fields and applications already rely on empirical data gathered through surveys or similar
questionnaires. Surveys are often employed in commercial markets and e-commerce to better
understand customer needs. Psychology and medicine frequently rely on information reported by
patients in questionnaires. Helping people make decisions in their everyday life can be accomplished
with questionnaires supplemented with machine learning [1]. The datasets explored in this paper
stem from this latter application.

In the field of psychology personality evaluation questionnaires are common [14], e.g. the
Myers-Briggs type indicator. This test classifies according to extraversion (E) or introversion (I),
sensing (S) or intuition (N), thinking (T) or feeling (F), and judging (J) or perceiving (P). The final
classification consists of four values from these pairs, such as ISTJ, ISFJ, ESTP, ESFP, for a total
of 16 classifications. Psychologists use statistical and empirical strategies to manually determine
the correlation between questions and outputs, using data from people taking these questionnaires
[15].

Beyond psychology, surveys are a common tool to aid the hiring process in business. Potential
employees may be asked to complete a survey, which the company examines to determine if they
are a good fit. Some larger companies already use such surveys as an automatic preliminary exami-
nation. When determining correlations between the questions asked and possible outputs, whether
manually or automatically, our results show relying on answers provided by current employees is
risky, as they are likely to be inaccurate and inconsistent.

In the field of machine learning, many famous and popular datasets rely, either partially or
entirely, on human input. The human activity recognition dataset [16] uses smartphone sensors
to form the input attributes, with labels for activities such as walking, laying down, and sitting.
By requiring individuals to perform tasks, this dataset introduces human input to an otherwise
objective set of measurements. For example, one individual may sit slumped backwards, in an
almost laying position. This dataset illustrates how human input can introduce noise in difficult to
predictable ways.

Although medical applications are known for rigorous data, these datasets can still require
human input. The heart disease dataset [17] uses both objective measurements and data reported
by the patient to predict heart disease. The patient is required to report the location, degree, and
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cause of pain. This human input is likely to introduce significant noise.
While data from human input is often analyzed and criticized in sociology, business, medicine,

and various other fields [18, 19, 20], the effect on supervised learning is seldom explored. The
majority of literature on survey data focuses on the prediction of missing attributes [21, 22], rather
than the characteristics of human input for supervised learning.

3 Explored Learning Architectures

Supervised learning architectures are chosen for their popularity, uniqueness, and effectiveness. This
selection is not meant to be comprehensive, or optimal for these datasets, but rather to provide a
well rounded means of exploring data.

3.1 Multilayer Perceptron

Multilayer perceptrons (MLP) have been a staple of pattern recognition and classification problems
since the 1980s [23, 24], and are found in numerous applications, from financial systems to artistic
expression [25]. Although MLPs are highly regarded as both relatively simple and highly effective
neural networks, they do not always handle inconsistent data well. This is because a MLP must
carefully position hyperplanes in order to classify data. This allows for the solution of complex,
nonlinear problems. However, similar inputs can be classified very differently. In some problems,
this is desirable, but it can lead to poor classification with noisy data. As such, datasets with
human input provide a interesting challenge for this architecture.

With MLP so well-known, we do not summarize the classic backpropagation with momentum
learning algorithm. Instead, we focus on modern enhancements, activation functions, training
methods, and other extensions that have been developed due to the popularity of MLP.

While sigmoidal activation functions were originally recommended for MLP, research has found
rectifier (ReLU) functions to provide more consistent training and faster convergence [26, 27, 28]. A
naive rectifier has the form f(x) = max(0, x). However, this function provides no gradient for back-
propagation. Instead, the softplus function f(x) = ln(1 + ex), depicted in Figure 1, approximates
a rectifier while providing a gradient.

The standard backpropagation method of presenting every instance in every iteration has proven
unnecessarily slow on large datasets. Stochastic gradient descent (SGD) [29] is an alternative
approach that provides faster convergence and reduces the chance of becoming trapped in local
minima. In SGD, a small number of patterns are randomly selected every iteration, and presented
for training.

Dropout is a very recent technique that reduces overfitting by preventing co-adaptation of neu-
rons [30]. During training, input and hidden neurons are randomly, and temporarily, deactivated.
This mechanism efficiently emulates the training of an exponential number of neuron configura-
tions. After training, weights are adjusted to the expected weights given the stochastic training
mechanism, W = pW ′, where W is the weight matrix after adjustment, W ′ is the weight matrix
during training, and p is the independent probability of a neuron being active during training.

Since our goal is to explore the underlying data, we make no attempt to optimize the MLP
architecture for each dataset, beyond hyperparameters. Instead we provide a configuration that is
modern and popular, using ReLU activation functions, SGD, and dropout, in addition to standard
backpropagation with momentum.
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Figure 1: Softplus (ReLU) Activation Function

3.2 Radial Basis Function Network

To contrast the hyperplane based MLP, the radial basis function (RBF) network [31, 32, 33] is
included. The RBF network utilizes hyperspheres to transform the problem space. These hyper-
spheres can be positioned with a large margin of error, minimizing the effect of noisy data. However,
RBF networks do not have the same level of development and advancement as MLP. As such, they
do not typically reach the same levels of accuracy in the state-of-the-art. However, noisy datasets
play to the strengths of RBF networks.

The RBF network has a hidden layer of RBF neurons. Each neuron i has a center ~ci. During
activation, this hidden layer returns a vector with one element ni for each RBF neuron, determined
by distance d(~x, ~ci) = ||~x− ~ci|| between input vector ~x and ~ci, and an RBF function. The Gaussian
function is popular for this purpose:

ni = e−
d(~x,~ci)

2

v (1)

Where v is a variance variable that determines the magnitude of ni at a given distance.
Clustering is common for positioning the neuron centers, and any known clustering algorithm

can produce a satisfactory arrangement of neurons. Our RBF architecture uses a standard Kohonen
self organizing map (SOM), a state-of-the-art and very effective clustering method [34, 35, 36].

The output layer of the RBF network is similar to MLP:

~o = W~n (2)

Where W is a weight matrix and ~n is the vector formed by all neuron outputs ~ni. The learning
equation is likewise similar:

Wt+1 = Wt + α~nt
ᵀ(~T − ~ot) (3)

Where 0 < α ≤ 1 is a learning rate, ~T is the target vector, and the subscript t denotes a time step.
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Note that the error term ~T − ~ot is not multiplied by the network output ~ot, as in MLP. As
such, the RBF network learns to directly reproduce a given target ~T , rather than positioning a
hyperplane to separate instances. Despite this, the RBF network can simultaneously learn many
patterns because the localized mechanism of the RBF neurons performs a soft partition of the input
space. Therefore, different target vectors can be learned in different portions of the input space.

3.3 Probabilistic Neural Network

Probabilistic neural networks (PBNN) are shown to be useful for classification with highly noisy
data [37], such as text data mined from web pages [38]. In such situations, a PBNN can have up
to twice the accuracy of an MLP. As such, we expect high performance from this architecture.

Like RBF networks, the PBNN uses hyperspheres in the hidden layer, and thus has the same
advantage as RBF networks with noisy data. The PBNN matches an RBF neuron to each pattern in
the dataset. This allows for high accuracy with datasets that are not easily clustered. Additionally,
the PBNN can output the probability of each class, rather than just a classification [39].

For each pattern p in a dataset, the PBNN creates an RBF neuron i with a center equal to the
input vector of p. Additionally, the PBNN stores the target vector ~ti of p for later use. During
activation, the PBNN calculates the Gaussian output of each neuron i (1), as in the RBF network.
The output calculation is where the PBNN diverges from the RBF network:

~o =

∑
i∈N ni~ti∑
i∈N ~ti

(4)

Where N is the set of neurons stored in the PBNN. Note the normalization by stored target vectors
in the denominator, which minimizes the effect of uneven class frequencies. Optionally, the PBNN
can normalize the output to obtain probabilities: ~o

max(o) .
Since the PBNN does not require an iterative process of adjustment for training, it can quickly

converge in only one pass of the training data. This conveys the benefit of very fast training.
However, by storing every pattern as a neuron, activation is slower than a comparable RBF network.

3.4 Random Forest

The random forest (RF) classifier [40, 41, 42] is an ensemble of decision trees (DT) [43, 44, 45].
DT is a classic classification algorithm that uses a sequence of if-then rules, applied on each input
attribute, and arranged in a tree, to decide the class of an input. This is depicted in Figure 2.
While some variants expand on the if-then rule formula, this description remains appropriate.

Several learning algorithms exist to generate a decision tree. Most work by determining the
best attribute for a node, and recursing with a subset of instances for each child node. A child node
is generated for each value of an attribute, or a range for continuous attributes, and the subset of
instances for that node is those with that attribute value. The best attribute for a node is the one
that best splits instances into individual classes. The ideal attribute splits a node such that each
child node has instances with only 1 class. The closer an attribute is to this ideal split, the better.
Most decision tree learning algorithms are differentiated by how the quality of an attribute split is
determined. Information theory [47] remain popular for this purpose. ID3 [48], the classic decision
tree algorithm uses information gain to determine the best attribute to split on.

In RF each DT operates on a subset of input attributes, and is trained on a subset of instances.
Once trained, the RF classifies via a simple competitive vote among the DTs that make it up. The
class that most DTs output, is the output of the RF. The RF algorithm, despite its simplicity, has

5



Figure 2: Decision tree showing survival of passengers on the Titanic [46]

proven extremely useful in supervised learning due to its ability to almost monotonically increase
accuracy as the complexity of the ensemble increases [40].

Our RF implementation is provided by the scikit-learn Python library [49], using the information
gain based DT learning algorithm provided by scikit-learn. No limit is given to tree depth or node
splitting, and each terminal leaf contains only one class.

4 Surveys

With the empirical data gathering method known as a survey, we easily collect human input. Each
user is presented with a number of questions, and provides or selects an answer to each. In each
survey, the answer to one question forms the target data for a dataset, while the rest form the input
data. Datasets span a variety of topics, from Linux distributions, to pets, to alcoholic drinks.

Table 1 provides a sample of the questions presented. While not all are provided here, this
sample is representative of the questions used.

Survey questions that form the input vector for learning focus on demographics, personality, and
interests. The goal is to correlate characteristics of the individual with target questions. Statistical
analysis in Section 5.2 verifies the reliability of these questions.

Each question is presented in one of the following formats:

1. Radio button questions present a question and a selection of answers. Users can select one
and only one answer.

2. Checkbox questions are similar to radio button questions, but allow users to select any number
of answers, or no answer.

3. Scale questions present a question, and a selection of values from 1 to 7. Users can select one
value.

4. Number questions present a question and an input box that accepts a number from a given
minimum to maximum range.

An example of questions presented to users is provided in Figure 3
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Table 1: Sample questions
Category Questions

Demographic
What is your gender?
How old are you?

Big 5 Personality

I know many different words (I have a rich vocabulary).
I have excellent ideas.
I use sophisticated words.
I have many ideas.
I pay attention to details.
I like order.
I always work to the best of my abilities.
I like being the center of attention.
I start conversations.
I am interested in people.
I take time out for others.
I am often stressed out.
I am easily made unhappy.
I worry about things often.

General Personality

I like to stand out in a crowd.
I like being challenged.
I like taking risks.
I like being in control.
I am always energetic.
I am very patient.
Regarding rewards, do you prefer: (Quick, but lesser, rewards, A
long investment, with greater payoff)
Do you tend to focus on: (The big picture, The little details)

Interests

How much do you like watching TV?
How much do you like listening to music?
How much do you like reading books?
How much do you like browsing social media (Facebook, Twitter,
etc.)?
How much do you like dancing?
How much do you like programming?

Targets
What is your favorite Linux distribution?
What is your favorite type of pet?
What is your favorite type of alcoholic drink?
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Figure 3: Example survey questions

Figure 4: Conversion of Radio Question to Input

4.1 From Answers to Inputs

To facilitate use for supervised learning, raw answers are converted into numeric inputs.
Radio button questions are handled as nominal data. Each question is converted into a one-hot

array of values. All unselected answers receive a value of 0, and the selected answer receives a value
of 1. The total number of values is equal to the number of possible answers for the question. This
conversion is visually depicted in Figure 4.

Checkbox questions are handled as binary data. Each answer is converted into an array of
values, similar to radio questions. However, since multiple answers can be selected by the user, all
selected answers receive a value of 1, and all unselected answers receive a value of 0. This conversion
is visually depicted in Figure 5.

Scale questions are handled as ordinal data. Each question is translated into a single input.
The user selected value is normalized to a value from 0 to 1. This conversion is visually depicted
in Figure 6. Note that the selected value and maximum are offset by 1 because the minimum
normalized value is 0.

Answers to numeric questions are simply normalized from 0 to 1, providing a single input value.

Figure 5: Conversion of Checkbox Question to Input
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Figure 6: Conversion of Scale Question to Input

Table 2: Survey dataset statistics
Dataset Instances Input Size Target Size

Linux Distros 639 68 20

Pets 105 69 16

Alcoholic Drinks 186 40 11

Since radio questions contribute an additional dimension to the input space for every answer,
they are used sparingly. If a question has many potential answers, a checkbox question, or multiple
scale questions are used instead, since these formats provide more information per input dimension
than radio questions.

Finally, the processed answers are concatenated to form the input vector. Radio questions are
used to gather target data. As such, the target vector is a one-hot array.

4.2 Explored Topics and Datasets

Datasets are generated from three surveys of varying topics. Topics are: distributions of the Linux
operating system, common household pets, and alcoholic drinks.

The Linux survey [50] asks a number of questions about personality, including many from the
big five personality traits [51, 52, 53] , as well as questions about user interests, such as watching
movies, using social media, and reading books. The target question asks the user to select their
favorite Linux distribution, and specifies that the user must have used Linux for at least 2 years,
and be familiar with at least 3 Linux distributions. 19 of the most popular distributions are given
as options, in addition to an “other” option. Figure 7 presents the frequency of answers given to
this question.

The pets survey [54] asks similar personality questions, and adds questions specific to interacting
and caring for a pet. The target question asks the user to select their favorite type of pet, and
specifies that the user must have had this type of per for at least a year. Figure 8 presents the
frequency of answers given to this question.

The alcohol survey [55], as with the previous surveys, asks personality questions, and includes
a number of questions specific to the topic of alcohol. The target question asks the user to select
their favorite type of alcoholic drink, and specifies that they must have tried at least 4 types of
alcohol. Figure 9 presents the frequency of answers given to this question.

Statistics of the datasets generated from responses to these surveys are presented in Table 2.
The number of instances, equal to the number of responses; the number of values in an input vector;
and the number of values in a target vector, equal to the number of classes; are provided.
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Figure 7: Distribution of answers to the Linux survey

Figure 8: Distribution of answers to the pets survey
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Figure 9: Distribution of answers to the alcoholic drinks survey

5 Analysis of Data

Whether through negligence, ignorance, or maliciousness, self-reported input and target data often
results in noisy attributes and incorrect targets. Here, we statistically analyze datasets gathered
with human input, and compare to known datasets.

Although we focus on the use of datasets generated from human input in supervised learning,
we cannot directly utilize supervised learning for this analysis without introducing the bias inherit
in any model. This section uses conventional statistics and preprocessing techniques to directly
analyze the data, thereby decoupling the quality of the dataset from the effectiveness of the learning
algorithm.

5.1 Comparison Datasets

In addition to the survey datasets described in Section 4.2, a number of low-noise datasets are
presented for comparison. These datasets contrast our human input data by presenting objective
numerical information, rather than target and input values reported by people. By analyzing the
comparison datasets, we provide baseline results for low and acceptable levels of noise.

The well known iris dataset [56] contains input attributes describing various characteristics of
a flower, including sepal and petal measurements. The goal is to classify a flower into three types
of iris. This dataset is included for its precise attribute measurements, and undoubtedly correct
target classes. We can confidently claim this dataset to be low noise, and highly consistent.

The similarly popular diagnostic Wisconsin breast cancer dataset [56, 57] contains measurements
to aid in identifying cancer, and either a benign, or malignant classification. As with the iris
dataset, this cancer dataset provides attributes gathered through careful objective measurement.
As a dataset designed for medial application, we can trust the precision of the measurements and
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Table 3: Comparison dataset statistics
Dataset Instances Input Size Target Size

Iris 150 4 3

Cancer 569 30 2

Random 100 10 10

Table 4: Cronbach’s Alpha
Dataset Cronbach’s Alpha

Linux Distros 0.762

Pets 0.747

Alcoholic Drinks 0.784

accuracy of the classifications.
A dataset of randomly generated instances is included as a control. This dataset consists of 100

instances, each with an input consisting of 10 uniformly random values, from 0 to 1, and a class
randomly selected from 10 possible targets. We expect this dataset to perform very poorly, and
thus we can verify the validity of our tests.

The input vector of each dataset is normalized to a vector of values from 0 to 1, and the target
is presented as a one-hot vector. Table 3 presents statistics for the each comparison dataset. The
number of instances; the number of values in an input vector; and the number of values in a target
vector, equal to the number of classes; are provided.

5.2 Cronbach’s Alpha

Before analyzing the datasets generated from our surveys, we must verify that the surveys them-
selves are reliable. An unreliable test is unlikely to generate a consistent and useful dataset.
Cronbach’s alpha (CA) [58, 59] allows us to decouple the reliability of the survey from the noise of
the corresponding dataset.

CA statistically calculates the correlation between questions in a survey. When a set of questions
provide correlated data, we can conclude that they measure the same concept.

CA relies on a set of responses. Each response must form a list of score values, or items, derived
from question answers. See Section 4.1 for details on how we derive scores. With a matrix of score
values for each response, CA is calculated as:

α =
k

k − 1
(1−

∑
s2i

s2T
) (5)

where k is the number of score values for each response, s2i is the variance of the ith item given the
set of responses, and s2T is the variance of a total score item obtained by summing all items for a
response.

Table 4 presents the CA scores for our surveys. The maximum CA score is 1.0, and a score ≥ 0.7
is commonly considered good [59]. CA scores ≥ 0.9 are rare, and may indicate many redundant
questions [58]. The high scores of our surveys indicate internal consistency and reliability of our
surveys. As such, we can conclude that the choice of questions present no inherent noise.

We also note that several surveys, other than those presented, have been performed and rejected
due to low reliability. The surveys and corresponding datasets presented in this paper are only those
with high reliability. This decision is essential to our analysis.
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Figure 10: The Effect of Noise Cleaning on Noisy XOR

5.3 Noise Cleaning

Noise cleaning methods allows examination of datasets in the context of supervised learning, but
independent of any particular architecture. This technique is important to our analysis, as it decou-
ples the quality of a dataset from the effectiveness and bias of a supervised learning architecture.

A k-nearest neighbors based noise cleaning method, [7, 8, 9, 10] is used to correct potentially
inaccurate target classes in a machine learning dataset. This method examines every instance in
a dataset. For each instance, it finds the k nearest neighbors. If at least k′ neighbors agree on a
class, the instance receives, or maintains, this class. Otherwise, the instance is removed from the
dataset. Since (k + 1)/2 ≤ k′ ≤ k, only one class c among the k nearest neighbors can meet the
criteria that Cc ≥ k′, where Cc is the count of class c among the k nearest neighbors. Also note
that the k nearest neighbors are drawn from the original dataset, not the cleaned dataset as it is
constructed.

Figure 10 provides an example of this algorithm on a noisy XOR dataset, with 100 additional
instances for each original instance and Gaussian noise added to every additional instance. Before
cleaning, we see many instances of the wrong class mixed with the correct instances, in all sectors.
After cleaning, these instances are largely removed or corrected. Clearly, the dataset after cleaning
better represents the XOR meaning of class 0 in the top right and bottom left sector, and class 1
in the top left and bottom right sector.

5.3.1 Noise Cleaning Analysis Results

For this analysis, we need only report the amount of mislabeled data in a given dataset to determine
noise. Tables 5, 6, and 7 present this analysis. The percent of instances with changed target values,
the percent of removed instances, and the sum of these percents, given as percent adjusted, are
presented for each dataset.

This analysis confirms that the datasets gathered through human input show significantly higher
levels of noise than the comparison datasets, with over 90% of instances removed in the worst case.
The random dataset provides an essential benchmark for this analysis. Naturally, we except a
completely random dataset to be very noisy, and difficult to generalize. The fact that datasets
gathered through self-reported surveys show similar levels of adjustment is proof of the difficulties
human input presents in the machine learning task.

13



Table 5: Noise Cleaning Results When K = 3 and K ′ = 2
Dataset Percent Changed Percent Removed Percent Adjusted

Linux Distros 27.86% 57.75% 85.60%

Pets 34.29% 6.67% 40.95%

Alcoholic Drinks 32.80% 53.23% 86.02%

Iris 4.67% 0.00% 4.67%

Cancer 2.99% 0.00% 2.99%

Random 24.00% 72.00% 96.00%

Table 6: Noise Cleaning Results When K = 5 and K ′ = 3
Dataset Percent Changed Percent Removed Percent Adjusted

Linux Distros 18.62% 71.99% 90.61%

Pets 29.52% 14.29% 43.81%

Alcoholic Drinks 16.67% 75.81% 92.47%

Iris 4.67% 0.00% 4.67%

Cancer 3.34% 0.00% 3.34%

Random 14.00% 85.00% 99.00%

We include various k and k′ values to ensure the noise detection is not significantly influenced by
these hyperparameters. For the datasets presented here, higher k and k′ values almost universally
increase the number of adjusted instances, allowing us to conclude that different assignment of
these hyperparameters will not influence the relative levels of noise.

6 Dataset Analysis Through Supervised Learning

Although statistical analysis provides an effective and unbiased view of data, to truly understand
the effect of human input on supervised learning, we must examine the behavior of learning and
classification with such datasets. Datasets gathered through self-reported surveys, presented in
Section 4.2, are compared to the comparison datasets presented in Section 5.1. Because our focus
is the presence of noise in human input datasets, we do not attempt to clean the survey datasets
for more effective learning. Several architectures, described in Section 3, are utilized, to minimize
the bias an architecture provides. This analysis, although dependent on the architectures and
hyperparameters used, is invaluable to understanding the effect of human provided attributes on
the characteristics of a dataset.

Our diverse selection of architectures provides an unbiased examination of the quality of these

Table 7: Noise Cleaning Results When K = 10 and K ′ = 7
Dataset Percent Changed Percent Removed Percent Adjusted

Linux Distros 2.03% 97.18% 99.22%

Pets 9.52% 77.14% 86.67%

Alcoholic Drinks 1.08% 97.85% 98.92%

Iris 1.33% 5.33% 6.67%

Cancer 1.58% 4.04% 5.62%

Random 0.00% 100.00% 100.00%
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Table 8: MLP Hyperparameters
Dataset Shape Learning Rate Momentum Rate pi ph Batch Size

Linux Distros 68, 200, 150, 100, 20 0.01 0.002 0.9 0.9 200

Pets 69, 100, 50, 20, 16 0.01 0.002 0.8 0.9 40

Alcoholic Drinks 40, 120, 60, 40, 11 0.01 0.002 0.9 0.5 60

Iris 4, 32, 16, 8, 3 0.01 0.003 1.0 1.0 75

Cancer 30, 80, 40, 20, 2 0.01 0.0035 0.9 0.7 200

Random 10, 120, 60, 40, 10 0.01 0.003 1.0 0.7 40

Table 9: RBF Hyperparameters
Dataset Neurons Variance (v) Learning Rate (α)

Linux Distros 40 2.0 0.9

Pets 20 1.0 0.9

Alcoholic Drinks 30 1.0 0.7

Iris 30 0.75 0.9

Cancer 60 1.0 0.9

Random 40 0.75 0.9

datasets. We note that these architectures are not intended to achieve the best possible accuracy,
but rather provide a diverse set of state-of-the-art techniques, through which we can examine the
quality and nature of the datasets.

Table 8 presents hyperparameters for the multilayer perceptron (MLP) architecture on each
dataset. Shape is given as a list of neuron counts for each layer, in order. pi is the active neuron
probability for the input layer, and ph is the active neuron probability for all hidden layers. Batch
size is the number of patterns randomly selected during every iteration.

Table 9 presents hyperparameters for the radial basis function (RBF) architecture on each
dataset. Neurons is the number of RBF neurons. Variance and learning rate are described in
Section 3.2.

Table 10 presents hyperparameters for the probabilistic neural network (PBNN) architecture
on each dataset. Variance is used in the Guassian equation (1), and is determined by the average
distance between instances in the dataset.

Table 11 presents hyperparameters for the random forest (RF) architecture on each dataset.
Trees is the number of decision trees in the RF.

Table 12 presents the supervised learning results for every architecture on each dataset. Five fold
cross validation is performed, and the mean result is presented. Mean number of training epochs,

Table 10: PBNN Hyperparameters
Dataset Variance (v)

Linux Distros 3.18

Pets 3.72

Alcoholic Drinks 2.22

Iris 1.29

Cancer 2.02

Random 1.26
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Table 11: RF Hyperparameters
Dataset Trees

Linux Distros 50

Pets 40

Alcoholic Drinks 60

Iris 10

Cancer 10

Random 80

mean accuracy on the training set, and mean accuracy on the testing set are provided. Tables
13 through 28 present mean confusion matrices on the testing sets for a sample of architecture,
dataset pairs, using the same cross validation. Each column corresponds to a class predicted by
the architecture, and each row corresponds to the expected class given an instance.

As we see in Table 12, the iris and cancer datasets, known for carefully and scientifically gathered
attributes and targets, show high accuracy on both training and testing sets, for all architectures.
By contrast, the survey datasets show significantly lower accuracy. However, it is worth noting
that because these datasets have 8 to 20 classes, these results are still far better than random
and are statistically significant. Unsurprisingly, the random control dataset is extremely difficult
to accurately classify, with the lowest testing accuracy for all architectures. We do not claim
high accuracy is impossible to achieve with these noisy datasets, only that is it difficult. Further
exploration may discover architectures and hyperparameters that result in high accuracy. Likewise,
this is not sufficient evidence that datasets gathered from people contain noise, but does support
the hypothesis.

We also note that the hyperspheres used in RBF and PBNN tend to provide higher accuracy
with these noisy datasets, proving the advantage they deliver on highly noisy and uncertain datasets.
Likewise, large RF ensembles prove relatively effective on these difficult datasets.

These results clearly indicate high noise and mislabeled instances in the survey datasets, proving
the hypothesis that human input leads to noisy inputs and inaccurate targets. While avoiding
attributes reported by individuals is infeasible in reality, data scientists should take note, and trust
such data hesitantly.

7 Conclusion

In this paper, we present both statistical analysis and exploration through supervised learning of
human input datasets gathered with self-reported questionnaire surveys. Our examination shows
that data reported by people shows high noise, inconsistency, and potentially mislabeled targets.
This should give caution to data scientists and developers relying on data provided by users.

The statistical analysis in Section 5 asserts the reliability of the surveys themselves with Cron-
bach’s Alpha, and thus verifies that the choices of survey questions present no inherent noise. A
k-nearest neighbors based noise cleaning method is then used to detect noise and correctness of
target classes in the corresponding datasets. This examination shows high noise in the human
input survey datasets, and low noise in the comparison datasets gathered through careful objective
measurement.

Application of supervised learning in Section 6 proves the initial statistical analysis. In all of
the utilized architectures, the survey datasets have significantly lower accuracy than those gathered
through objective measurement.
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Table 12: Supervised Learning Results
Dataset Architecture Iterations Training Accuracy Testing Accuracy

Linux Distros

MLP 50 36.15% 36.10%
RBF 30 36.85% 35.32%

PBNN 1 36.62% 36.10%
RF 1 99.22% 36.10%

Pets

MLP 50 51.43% 49.52%
RBF 54.6 59.29% 49.52%

PBNN 1 87.38% 57.14%
RF 1 99.05% 56.19%

Alcoholic Drinks

MLP 50 23.93% 21.01%
RBF 65.2 30.92% 19.87%

PBNN 1 39.24% 30.20%
RF 1 99.73% 24.25%

Iris

MLP 400 97.83% 96.67%
RBF 125.4 97.50% 95.33%

PBNN 1 92.83% 92.67%
RF 1 99.50% 94.67%

Cancer

MLP 200 89.16% 86.76%
RBF 62 96.75% 96.14%

PBNN 1 89.98% 89.65%
RF 1 99.82% 95.79%

Random

MLP 100 14.50% 13.00%
RBF 111.8 40.25% 8.00%

PBNN 1 36.25% 11.00%
RF 1 100.00% 5.00%
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In conclusion, people are inconsistent, and the inherent noise of human thought easily bleeds
into any data they provide. It is not uncommon for computer scientists to rely on data reported by
individuals. This data must be treated as noisy and potentially erroneous. With this knowledge,
proper measures can be taken for effective learning, and analysis can reasonably present such data
as questionable.
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Table 13: MLP Iris Confusion Matrix
10 0 0
0 9.2 0.8
0 0.2 9.8

Table 14: RBF Iris Confusion Matrix
10 0 0
0 9.2 0.8
0 0.6 9.4

Table 15: PBNN Iris Confusion Matrix
10 0 0
0 9.2 0.8
0 1.4 8.6

Table 16: RF Iris Confusion Matrix
10 0 0
0.2 9.2 0.6
0.2 0.6 9.2

Table 17: MLP Cancer Confusion Matrix
60 11.4
3.6 38.8

Table 18: RBF Cancer Confusion Matrix
70 1.4
3 39.4

Table 19: PBNN Cancer Confusion Matrix
71.4 0
11.8 30.6

Table 20: RF Cancer Confusion Matrix
70.4 1
3.8 38.6
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Table 21: MLP Alcoholic Drinks Confusion Matrix
1 0 0 0 0 8 0 0 0 0 0

0.4 0 0 0 0 1.8 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1.6 0 0 0 0 3.2 0 0 0 0 0
0.2 0 0 0 0 1.4 0 0 0 0 0
1.8 0 0 0 0 6.8 0 0 0 0 0
0.8 0 0 0 0 2.4 0 0 0 0 0
0.4 0 0 0 0 3 0 0 0 0 0
0.2 0 0 0 0 0.8 0 0 0 0 0

1 0 0 0 0 2 0 0 0 0 0
0.2 0 0 0 0 0.2 0 0 0 0 0

Table 22: RBF Alcoholic Drinks Confusion Matrix
4.2 0 0 3.2 0.2 0.4 0.6 0.4 0 0 0
0.2 0.4 0 1.2 0 0 0.2 0 0.2 0 0

0 0 0 0 0 0 0 0 0 0 0
1 0.2 0 1.2 0 1.2 0.2 0.2 0.4 0.4 0

0.4 0 0 1.2 0 0 0 0 0 0 0
2.2 0.4 0 3.4 0 1 0.8 0.2 0.4 0.2 0
1.2 0 0 1 0 0 0.4 0.2 0.2 0.2 0
0.8 0 0 1.2 0 1 0 0.2 0 0.2 0
0.2 0 0 0.2 0 0 0 0 0 0.6 0
0.6 0 0 1.4 0 0.6 0 0 0.4 0 0
0.2 0 0 0.2 0 0 0 0 0 0 0

Table 23: PBNN Alcoholic Drinks Confusion Matrix
8.8 0 0 0 0 0.2 0 0 0 0 0
2.2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0.8 0 0 0 0 0

1.4 0 0 0 0 0.2 0 0 0 0 0
6.2 0 0 0 0 2.4 0 0 0 0 0
2.2 0 0 0 0 1 0 0 0 0 0
3.2 0 0 0 0 0.2 0 0 0 0 0
0.6 0 0 0 0 0.4 0 0 0 0 0
2.4 0 0 0 0 0.6 0 0 0 0 0
0.2 0 0 0 0 0.2 0 0 0 0 0
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Table 24: RF Alcoholic Drinks Confusion Matrix
9 0 0 0 0 0 0 0 0 0 0

2.2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

4.8 0 0 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0 0 0
8.6 0 0 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0 0 0
3.4 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0

0.4 0 0 0 0 0 0 0 0 0 0

Table 25: MLP Random Confusion Matrix
0 0 0 0 0 0.2 0 0 0.4 0.4
0 0 0 0 0 0 0 0 0.4 0.6
0 0 0 0 0.6 0.2 0 0 0.4 0.4
0 0 0 0 0.2 0.2 0 0 0.4 0.6
0 0 0 0 0.6 0.4 0 0 0.4 1
0 0 0 0 0.6 0.6 0 0 0.8 1
0 0 0 0 0.2 0.4 0 0 0 1.2
0 0 0 0 0.6 0.4 0 0 0.2 0.6
0 0 0 0 0.4 0.8 0 0 0.6 1.4
0 0 0 0 0.8 0.8 0 0 0.4 0.8

Table 26: RBF Random Confusion Matrix
0 0 0 0 0.2 0.4 0 0.2 0.2 0

0.2 0 0 0.2 0 0.2 0 0 0.2 0.2
0 0.2 0 0.2 0.4 0.4 0 0 0.2 0.2
0 0 0 0 0.4 0.2 0.4 0.2 0.2 0
0 0 0 0 0.4 0.2 0.4 0.2 0.6 0.6

0.2 0.2 0 0 0.2 0.2 0.2 0.2 1 0.8
0 0 0 0 0.4 0.2 0.2 0.4 0.4 0.2
0 0.2 0 0 0.2 0.6 0.4 0 0.2 0.2
0 0 0 0 0.6 1 0.2 0.2 0.6 0.6
0 0.2 0 0 0.6 0.6 0.2 0.2 0.8 0.2
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Table 27: PBNN Random Confusion Matrix
0 0 0 0 0 0.4 0 0 0.2 0.4
0 0 0 0 0 0.2 0 0 0.2 0.6
0 0 0 0 0 0.2 0 0 1.2 0.2
0 0 0 0 0 0.4 0 0 1 0
0 0 0 0 0 0.8 0 0 1.4 0.2
0 0 0 0 0 0.4 0 0 1.2 1.4
0 0 0 0 0 0.6 0 0 0.4 0.8
0 0 0 0 0 0.4 0 0 1.2 0.2
0 0 0 0 0.2 1 0 0 1.6 0.4
0 0 0 0 0 1 0.2 0 1.4 0.2

Table 28: RF Random Confusion Matrix
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

1.6 0 0 0 0 0 0 0 0 0
1.4 0 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0
1.8 0 0 0 0 0 0 0 0 0
1.8 0 0 0 0 0 0 0 0 0
3.2 0 0 0 0 0 0 0 0 0
2.8 0 0 0 0 0 0 0 0 0
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