
Neural Field: Supervised Apportioned Incremental

Learning (SAIL)

Justin Lovinger, Iren Valova

Computer and Information Science

University of Massachusetts Dartmouth

N. Dartmouth, MA, USA

jlovinger, ivalova@umassd.edu

Abstract— When a person learns, they observe and interact

with their surroundings, and monitor the outcome of these

interactions. During this process, the brain only examines single

snapshots of information. It does not need to continuously revisit

past instances of time to retain learned information. Supervised

neural networks, as much as they resemble the human brain, do

not learn well incrementally. The standard multilayer perceptron,

radial basis function network and others, have a common problem

of losing learned information when additional data points are

presented. In this paper, we develop a supervised learning neural

network that converges on new information without overriding

previous knowledge. The proposed Neural Field can operate in

real time environments where a data point is seen once and never

revisited, or chase a function that changes over time without

continuously relearning on a full dataset. A dataset can be

presented in portions and the network will attain knowledge

incrementally. With a static ordered grid of radial basis function

neurons, the Neural Field both learns incrementally and

generalizes effectively.

Keywords— supervised learning; classification; regression

I. INTRODUCTION

In the early 1900s, Ivan Petrovich Pavlov discovered the
famous Pavlovian reflex, and showed that biological brains can
learn from positive and negative reinforcement. His theory on
classical conditioning has remained an integral component of
our understanding of learning. Reinforcement learning (RL)
aims to emulate classical conditioning in artificial agents. Here,
we examine RL w.r.t. Q learning [1, 2, 3]. Supervised learning

algorithms commonly learn Q :S´A®R [3, 4, 5].

However, an RL agent only sees a small section of the problem
space at any time. As such, a RL agent must learn Q piece by
piece, without a known dataset.

However, most supervised learning algorithms, such as the
popular multilayer perceptron (MLP), rely on the repeated
presentation of a series of data points from a well-sampled
problem space, i.e. a known dataset. Every data point is
presented once during a learning iteration, and then repeated
until convergence. If, instead, we imagined a sliding window, an
analogy for RL, moving over the dataset, and only a small
number of data points could be seen through the window, the
algorithm would retain only the data points that the window had
recently shown [5]. This problem has been solved by storing

every data point that the window passes over in a growing
dataset [5]. However, this solution is not feasible for long
learning sessions with continuous and infinite potential data
points, as the dataset quickly expands beyond finite
computational memory.

The proposed neural field: supervised apportioned
incremental learning (NF:SAIL) algorithm is designed to
overcome this limitation. By creating a static, ordered grid of
radial basis function-like nodes, the NF:SAIL can retain learned
data in one portion of the input space, even after repeated
presentation of data points in another portion of the input space.
This spatial storage mechanism allows the NF:SAIL to learn
functions incrementally, without repeated presentation of a
series of data points from a well-sampled problem space. The
cascade correlation network (CC) [6] is similarly capable of
retaining previously learned information due to its use of static
weights. However, CC is strictly a batch algorithm, which
requires a known dataset to learn. Using a cache mechanism
similar to [5], CC has found only limited success with online RL
[7].

NF:SAIL is designed to meet four requirements. First,
NF:SAIL must retain learned information from a portion of the
input space with relative accuracy, even after repeated
presentation of data points from different portion of the input
space. Second, NF:SAIL must be capable of approximating
continuous functions, as opposed to an algorithm used only for
classification that outputs discrete classes. This can be
formalized as: the output of the network, defined by

j :Ân®Âm
, where for a small vector

, and an input , i.e. the network output changes, even with
a small change to the input vector. Third, NF:SAIL must
generalize to unknown outputs, assuming the input vector for the
unknown data point is in a portion of the input space that the
algorithm has learned. This last requirement is simply the
embodiment of supervised learning. Fourth, NF:SAIL must
learn incrementally without knowledge of a dataset beyond the
data point it is presented. This strict online learning requirement
allows NF:SAIL to operate directly in real time environments.

II. THE NEURAL FIELD ALGORITHM

In order to learn incrementally while retaining previous
information, function information must be stored in the local

input space around individual neurons, as opposed to globally
on all neurons. With this local storage, we can learn part of a
function in one portion of the input space, and then learn another
part of the function in another portion of the input space, without
overriding the obtained knowledge. The key to this local storage
is the neural contribution, which is mathematically formalized

as a radial basis function. Given an input vector , a neuron

center , and a Gaussian variance v , our radial basis

function computes the neuron contribution cn as:

 (1)

With this Gaussian representation, the neuron contribution

cn approaches 1 as the distance between the neuron center

and the input vector approaches 0. Conversely, the neuron’s
contribution approaches 0 as distance approaches ∞. The

variance determines how quickly cn approaches 0. This

property makes the neuron contribution essential for storing
function information in local neuron space.

A. Learning the Output

The NF:SAIL output is calculated through the standard
radial basis function (RBF) rule [8, 9]. Normalization by total
contribution is added for a smooth transition between learned
data points to improve generalization. Given the neuron output

, and mnetwork neurons, the network output is:

 (2)

Instead of directly calculating the matrix inverse to obtain
the neuron outputs [8], we use an iterative learning rule to allow

for incremental learning. We adjust towards a given target

vector , without overriding parts of the function in another
portion of this input space, by scaling the neurons rate of change
by its percent of contribution.

 (3)

where m is a user provided learning rate, 0 < m £1.0 . With

this rule, the closer a neuron is to the input vector , the faster
it is adjusted, which prevents information stored in distant
neurons from being overridden by new data points.

B. Positioning Neurons

Since the goal is to store function information spatially,
neurons should cover the input space. Clustering is often
employed for this purpose. However, most clustering methods
require a known dataset, contradicting our requirements.
Incremental clustering can be performed by a self-organizing
map (SOM), but the movement of neurons in a SOM rapidly
overrides previously learned data points. Instead, an ordered
grid of static neurons allows complete coverage while
effectively retaining learned information. Fig. 1 shows 9
neurons covering a 2-dimensional input space spanning from -1
to 1. Points represent neuron centers. Circles visualize a low
neuron contribution of 0.01. Positioning neurons with overlap
allows for generalization, as in the tile coding and RBF methods
popular in reinforcement learning [3].

With the 9 neurons in Fig. 1, very limited information can be
stored. Given two data points with similar input vectors and
dissimilar output vectors, only one of these points could be
learned on a small number of neurons. Since only a small
amount of information can be stored in this portion of the input
space, we say it has a coarse resolution. To improve the
resolution, and, therefore, the amount of information that can be
stored, we decrease the distance between neurons, thereby
increasing the number of neurons in a given portion of the input
space (Fig. 2). This greater information density comes at the cost
of greater computation and the risk of over fitting, a common
tradeoff in supervised learning.

C. Accessing Neurons

The naive approach of pre-generating neurons to cover an
input space presents a number of problems. First, the number of
neurons required increases exponentially with the
dimensionality of the input space. Iterating over every neuron to
acquire the output vector becomes unfeasible with high
dimensional input spaces. Second, the many neurons required to
cover a high dimensional input space necessitate a large amount
of memory. Third, it requires a known input space. However,
many problems dynamically generate data points through real
time experience or nondeterministic simulations. Such data
points can unexpectedly appear beyond the bounds of a set input
space. If neurons do not cover these unexpected data points,
learning and generalization is compromised by the same
principle of too coarse resolution covered in section 2.2.

The solution to these problems is conceptually simple and
elegant. With static neuron positions and variance, we know the
sphere of influence of every neuron before allocation in
memory. The key is an algorithm to determine the positions of
neurons around an input with contribution greater than some

threshold ct . First we must know the distance d at which a

neuron with variance v has a contribution of ct :

dt = v log 1
ct() (4)

Given a hypersphere of radius dt , centered on an input i ,

and a grid of points spaced m apart, we can determine all points
on the grid within the given hypersphere.

Fig. 1. Neuron positions in 2 dimensions

Fig. 2. Finer resolution neuron positions

Following the pseudocode in Table 1, each recursive
iteration determines one coordinate for a set of points on the
grid, then constrains the next function call according to this
coordinate. Once the coordinates of the last dimension are
determined, all coordinates are concatenated to generate a set of
vectors for points on the grid within the hypersphere. This
technique efficiently computes all positions without checking
any points beyond the hypersphere. By calling this function with
an input vector and distance threshold, we obtain the grid
positions of all neurons that provide a significant contribution to
the input.

With positions known, a hash table mapping position to neuron
allows access to each neuron in constant time. This hash-field
solves the time complexity problem. With a small extension, we
solve the memory complexity and out of bounds problems.
Instead of pre-generating every neuron, we wait until the neuron
is required. If the neuron exists, we return it immediately,
otherwise, we create the neuron and assign it to the hash-field
before returning it. This procedure, commonly known as lazy
evaluation, allocates only neurons in the space around inputs.

D. Adaptive Variance

As dimensionality of data increases, the maximum distance
between data points and neurons also increases. In the worst

case, for a given variance v , the furthest data point may have
no neurons within the distance given by (4). The result is an

inability to learn. Both increasing v and a finer resolution

TABLE I. ALGORITHM

GridPoints (center c, radius r)
 If c contains 1 coordinate

 Let s = closest first coordinate on grid > c0 - r()

 Let e = closest first coordinate on grid < c0 + r()

 Return all coordinates from s to e spaced m apart

 Set P = an empty list

 Set x = closest first coordinate on grid > c0 - r()

 While x £ c0 +1

 Let r2 = r2 - x -c0()
2

 For partial point p in GridPoints c1..n,r2()do

 Let j = x concatenated with p

 Add j to list P

 End for
 Set x = x+m

 End while
 Return P

Call GridPoints i,dt()

solve this problem, but increase computation and memory
usage. Instead, variance can adapt to the needs of a particular
input, allowing efficient computation and learning on all data

points. Given the distance to the closest neuron, d , and a user

provided variance scaling factor s :

v =
d + s log 1+ d()()

2

log 1
ct()

 (5)

where ct is the contribution cutoff value.

With (5), every input is covered by at least 1 neuron. Fig. 3
and 4 depict adaptive variance. Squares represent inputs. Points
represent neuron centers. Circles visualize a low neuron
contribution of 0.01. Inputs very close to a neuron rely entirely
on that output of that neuron (Fig. 3), while inputs far from any
neuron rely on the combination of several nearby neurons (Fig.
4). The learning and generalization capabilities of the network
remain the same, but unnecessary computation is avoided. As
such, the advantage of guaranteed coverage of the input space is
maintained for all resolutions, while computational and memory
complexity is optimized.

III. RESULTS AND COMPARATIVE ANALYSIS

These tests prove the four requirements for NF:SAIL, i.e. the
ability to retain learned data points after repeated presentation of
other data points, the ability to approximate functions,
generalization to unknown inputs, and learning incrementally.
In each experiment formulation, we conduct comparative tests
with two incremental learning architectures: MLP and RBF.
MLP is presented in its online learning mode, and is commonly
used in reinforcement learning [4, 5]. RBF is chosen because it
bears commonalities with NF:SAIL through its local output
calculation. While there are many other kernel-based and
supervised algorithms, we avoid batch learning systems due to
their requirement for a previously known dataset, which
contradicts the requirements of reinforcement learning. Each
requirement is presented in its own subsection with appropriate
datasets. The function approximation, classification, and
regression tests feature a 3-fold cross validation method for the
analysis of results.

A. Retention of Previously Learned Data

While effective classification or regression are essential for
any supervised learning system, NF:SAIL is primarily designed
for the ability to retain learned information after many iterations
of learning new data points, without revising previous data
points. We refer to the initially learned data points as stagnant
data.

 In the absence of standard testing methods to demonstrate
this ability, we devise a test wherein a supervised learner is
trained on one half of a dataset until convergence (error < 0.02),
then the second half of the dataset until convergence. Finally,
the learner is tested on the first half of the dataset, the stagnant
data. If the learner has a low error on the first set, we say that it

can retain stagnant data, otherwise, the learner forgets stagnant
data. In order to isolate the learner’s ability to retain stagnant
data from its ability to generalize, we use datasets of randomly
generated data points.

Each dataset consists of 10 data points. Each data point has
a single input and a single output value. Each value is randomly
chosen from a range of -1.0 to 1.0. This test is run 100 times with
100 different random datasets. The NF:SAIL is configured with
a resolution of 0.005, a learning rate of 1.0, and variance scaling
of 1. The MLP is configured with a hyperbolic tangent transfer
function for the hidden layer and a linear transfer function for
the output layer, a learning rate of 0.05, a momentum of 0.015,
and 1 to 20 hidden neurons, increased until the MLP can
converge. The RBF has 40 neurons, and uses the same output
learning mechanism as the NF:SAIL, with a learning rate of
0.0125. However, the kernel

Fig. 3. Adaptive variance with input near neuron

Fig. 4. Adaptive variance with input far from neurons

centers for the RBF are positioned with a self-organizing map
(SOM) with a neighborhood of 2, a movement rate of 0.1 for the
closest neuron, 0.0368 for the nearest neighbor, and 0.0018 for
the second nearest neighbor. The mean retention error and
standard deviation for each learner is presented in Table 2.

The proposed NF:SAIL algorithm shows exceptional ability
to retain stagnant data, with a retention error near the
convergence threshold. The MLP and RBF rapidly override
stagnant data to converge on the new set of data. Despite the
RBFs similar output and learning mechanism, the movement of
neuron positions proves a major disadvantage over NF:SAILs
static neuron centers. The detriments of MLP presented in [4]
are only reinforced by these results. With the ability to
consistently retain previously learned information, NF:SAIL
can effectively learn as information is presented, without
revisiting previous data points. An ability absent in the current
state of the art for supervised learning.

Since the resolution of NF:SAIL determines how much
information can be stored in a given portion of the input space,
retention ability is also affected. Fig. 5 demonstrates this
dependence by plotting the mean retention error against the
resolution of a NF:SAIL. Mean retention error is determined
with the same test as Table 1. Only resolution is adjusted.
Despite noise caused by the stochastic nature of this test, the
correlation makes it clear that finer resolution allows for greater
retention of stagnant data. Furthermore, NF:SAIL, even with
coarse resolution, shows an ability to retain data beyond both the
compared algorithms.

B. Classification and Regression

To test the classification and regression abilities of the
NF:SAIL, we perform 3 fold cross validation on the popular iris
[10] and cancer [10, 11] classification datasets, as well as the

California housing [12, 13, 14] and a sine regression dataset, and
compare the performance of NF:SAIL to MLP and RBF. These
use the same architecture as our previous tests, and
hyperparameters are manually adjusted for each dataset. The

sine dataset consists of 300 random inputs from 0 to 3p with
corresponding outputs generated from the trigonometric sine
function. The nonlinearity of the sine function makes it useful
for benchmarking function approximation [14, 15]. The number
of iterations until convergence, or a reached limit, is recorded
for each fold, and the mean of these values is presented. Mean
squared error for both training and testing sets is also recorded,
and the mean of folds presented. Standard deviation (SD) is also
presented for each metric. The results are shown in Table 3.

For the iris dataset, the NF:SAIL has a resolution of 0.25,
and a set variance of 0.125. The MLP has 4 hidden neurons, a
learning rate of 0.25, and a momentum of 0.1. The RBF has 30
neurons, a learning rate of 0.15, and a maximum of 5000
iterations. For the cancer dataset, the NF:SAIL has a resolution

TABLE II. RETENTION TEST RESULTS

 NF MLP RBF

Avg Retention MSE 0.0891 0.6687 1.1391
Standard Deviation 0.1357 0.4853 2.0981

Fig. 5. Effect of resolution on retention ability

of 0.75, and variance scaling of 2. The MLP has 10 hidden
neurons, a learning rate of 0.05, and a momentum of 0.01. The
RBF has 3 neurons, a learning rate of 1.0, and a max of 100
iterations, which is chosen because no improvement in training
error is seen after 100 iterations. For the California housing
dataset, the NF:SAIL has a resolution of 0.5, variance scaling of
1, and a max of 10 iterations. The MLP has 10 hidden neurons,
a learning rate of 0.1, a momentum of 0.025, and a max of 1000
iterations. The RBF has 24 neurons, a learning rate of 0.125, and
a max of 100 iterations. For the sine dataset, the NF:SAIL has a
resolution of 0.25, and a set variance of 0.125. The MLP has 12
hidden neurons, a learning rate of 0.04, and a momentum of
0.02. The RBF has 12 neurons, and a learning rate of 0.25. For
all datasets, the NF:SAIL has a learning rate of 1.0.

NF:SAIL proves its ability to effectively generalize on all
datasets, surpassing the similar RBF network in all cases.
Despite using the same output learning and calculation method,
the NF:SAILs ability to effectively process large numbers of
neurons, with guaranteed coverage of the input space, proves an
advantage over the RBFs moving neurons. By surpassing all
other algorithms on the housing and sine dataset regression
problems, NF:SAIL proves its ability to effectively generalize
with continuous inputs and outputs with remarkable
effectiveness.

We emphasize that NF:SAIL is not intended to outperform
the state of the art in classification and regression. Instead,
NF:SAIL provides the unique ability to effectively retain
learned information without revising previous data points.
Regardless, NF:SAIL displays classification and regression
abilities that closely match the state of the art.

On all datasets, NF:SAIL converges remarkably quickly.
With this consistency, one can trust NF:SAIL to perform well
once configured for a given problem. Most supervised
algorithms are sensitive to hyperparameter values, requiring
constant adjustment to maintain performance while data points
in a real time dataset change. This concept is illustrated in Fig.
6, where various hyperparameters for MLP are tested on the iris
dataset. Hidden neurons are always 4. Even small adjustments
result in instability, lack of convergence, or even divergence.
This sensitivity wastes human resources on hyperparameter
adjustment. Fig. 7 presents the same test for NF:SAIL. Variance
is always half of resolution. NF:SAIL proves robust to
hyperparameter adjustment with remarkable

Fig. 6. MLP hyperparameter comparison

Fig. 7. NF:SAIL hyperparameter comparison

performance despite non-optimal adjustment, saving time and
human resources, allowing for high autonomy and low cost.

IV. CONCLUSIONS

In this paper, we introduce a new supervised learning
algorithm that uses a static ordered grid of radial basis function
neurons featuring neuron contribution (1), which is at the heart
of the algorithms abilities. Through the tests in section 3.1 and
3.2, we have shown that NF:SAIL has the distinct advantage of
effectively retaining previously learned data points even after
converging on new data points. We have also shown that the
proposed NF:SAIL can effectively generalize on classification
and regression tasks. Finally, we presented a mechanism for
efficient lazy evaluation of static neurons in an infinite grid.

NF:SAILs ability to train on new data points without
overriding previously learned information, and its ability to
effectively generalize, make it an ideal algorithm for learning in
continuous real time environments. When a massive number of
data points can be seen, and each data point is unique, it is
infeasible to store every data point for training. Instead, the
learner must learn from each data point as it is presented, without
overriding information from previous data points, even if a
portion of the input space remains unvisited for many iterations.

Examining problems beyond real time learning, NF:SAILs
exceptional ability to retain learned information while training
allows one to efficiently update the network when new data
points are obtained. Simply feeding new data points to NF:SAIL
allows for efficient convergence without retraining on the set of
all previous and new data points. An ability absent in state of the
art supervised learning methods.

V. REFERENCES

[1] Watkins, Christopher John Cornish Hellaby. "Learning from delayed
rewards." PhD diss., University of Cambridge, 1989.

[2] Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine
learning 8, no. 3-4 (1992): 279-292.

[3] Sutton, Richard S., and Andrew G. Barto.Reinforcement learning: An
introduction. Vol. 1, no. 1. Cambridge: MIT press, 1998.

[4] Lange, Sascha, and Martin Riedmiller. "Deep auto-encoder neural
networks in reinforcement learning." In IJCNN, pp. 1-8. 2010.

[5] Riedmiller, Martin. "Neural fitted Q iteration–first experiences with a data
efficient neural reinforcement learning method." In Machine Learning:
ECML 2005, pp. 317-328. Springer Berlin Heidelberg, 2005.

[6] Scott Fahlman, and Christian Lebiere. "The Cascade-Correlation
Learning Architecture." In Advances in Neural Information Processing
Systems 2. 1990.

[7] Rivest, François, and Doina Precup. "Combining TD-learning with
cascade-correlation networks." In ICML, vol. 3, pp. 632-639. 2003.

[8] Broomhead, David S., and David Lowe. "Multi-variable functional
interpolation and adaptive networks." Complex Systems 2 (1988): 321-
355.

[9] Broomhead, David S., and David Lowe. Radial basis functions, multi-
variable functional interpolation and adaptive networks. No. RSRE-
MEMO-4148. ROYAL SIGNALS AND RADAR ESTABLISHMENT
MALVERN (UNITED KINGDOM), 1988.

[10] Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

[11] Mangasarian, Olvi L., R. Setiono, and W. H. Wolberg. "Pattern
recognition via linear programming: Theory and application to medical
diagnosis." Large-scale numerical optimization (1990): 22-31.

[12] Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297.

[13] Huang, Guang-Bin, Paramasivan Saratchandran, and Narasimhan
Sundararajan. "A generalized growing and pruning RBF (GGAP-RBF)
neural network for function approximation." Neural Networks, IEEE
Transactions on 16, no. 1 (2005): 57-67.

[14] Huang, Guang-Bin, Lei Chen, and Chee-Kheong Siew. "Universal
approximation using incremental constructive feedforward networks with
random hidden nodes." Neural Networks, IEEE Transactions on 17, no. 4
(2006): 879-892.

[15] Dhar, V. K., A. K. Tickoo, R. Koul, and B. P. Dubey. "Comparative
performance of some popular artificial neural network algorithms on
benchmark and function approximation problems." Pramana 74, no. 2
(2010): 307-324.

TABLE III. DATASET COMPARISONS

 Iris Dataset Cancer Dataset California Housing Dataset Sine Dataset

 NF:SAIL MLP RBF NF:SAIL MLP RBF NF:SAIL MLP RBF NF:SAIL MLP RBF

Mean

Iterations
17.33 1979 5000 13.66 198.7 100 10 1000 100 1 484 20.66

Mean

Training
Error

0.019 0.038 0.089 0.019 0.018 0.227 0.037 0.068 0.165 0.0022 0.0346 0.0174

Mean

Testing

Error

0.079 0.063 0.155 0.105 0.076 0.228 0.054 0.068 0.165 0.0022 0.0329 0.0197

Iterations

SD
4.03 2167 0 3.09 108.7 0 0 0 0 0 378.87 4.921

Training

Error SD
0.000 0.023 0.012 0.000 0.004 0.006 0.002 0.001 0.005 0.0002 0.0301 0.0021

Testing
Error SD

0.021 0.023 0.015 0.033 0.007 0.022 0.007 0.003 0.004 0.0001 0.0263 0.0040

