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Abstract— When a person learns, they observe and interact 

with their surroundings, and monitor the outcome of these 

interactions. During this process, the brain only examines single 

snapshots of information. It does not need to continuously revisit 

past instances of time to retain learned information. Supervised 

neural networks, as much as they resemble the human brain, do 

not learn well incrementally. The standard multilayer perceptron, 

radial basis function network and others, have a common problem 

of losing learned information when additional data points are 

presented. In this paper, we develop a supervised learning neural 

network that converges on new information without overriding 

previous knowledge. The proposed Neural Field can operate in 

real time environments where a data point is seen once and never 

revisited, or chase a function that changes over time without 

continuously relearning on a full dataset. A dataset can be 

presented in portions and the network will attain knowledge 

incrementally. With a static ordered grid of radial basis function 

neurons, the Neural Field both learns incrementally and 

generalizes effectively. 
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I. INTRODUCTION 

In the early 1900s, Ivan Petrovich Pavlov discovered the 
famous Pavlovian reflex, and showed that biological brains can 
learn from positive and negative reinforcement. His theory on 
classical conditioning has remained an integral component of 
our understanding of learning. Reinforcement learning (RL) 
aims to emulate classical conditioning in artificial agents. Here, 
we examine RL w.r.t. Q learning [1, 2, 3]. Supervised learning 

algorithms commonly learn Q :S´A®R  [3, 4, 5]. 

However, an RL agent only sees a small section of the problem 
space at any time. As such, a RL agent must learn Q piece by 
piece, without a known dataset. 

However, most supervised learning algorithms, such as the 
popular multilayer perceptron (MLP), rely on the repeated 
presentation of a series of data points from a well-sampled 
problem space, i.e. a known dataset. Every data point is 
presented once during a learning iteration, and then repeated 
until convergence. If, instead, we imagined a sliding window, an 
analogy for RL, moving over the dataset, and only a small 
number of data points could be seen through the window, the 
algorithm would retain only the data points that the window had 
recently shown [5]. This problem has been solved by storing 

every data point that the window passes over in a growing 
dataset [5]. However, this solution is not feasible for long 
learning sessions with continuous and infinite potential data 
points, as the dataset quickly expands beyond finite 
computational memory. 

The proposed neural field: supervised apportioned 
incremental learning (NF:SAIL) algorithm is designed to 
overcome this limitation. By creating a static, ordered grid of 
radial basis function-like nodes, the NF:SAIL can retain learned 
data in one portion of the input space, even after repeated 
presentation of data points in another portion of the input space. 
This spatial storage mechanism allows the NF:SAIL to learn 
functions incrementally, without repeated presentation of a 
series of data points from a well-sampled problem space. The 
cascade correlation network (CC) [6] is similarly capable of 
retaining previously learned information due to its use of static 
weights. However, CC is strictly a batch algorithm, which 
requires a known dataset to learn. Using a cache mechanism 
similar to [5], CC has found only limited success with online RL 
[7]. 

NF:SAIL is designed to meet four requirements. First, 
NF:SAIL must retain learned information from a portion of the 
input space with relative accuracy, even after repeated 
presentation of data points from different portion of the input 
space. Second, NF:SAIL must be capable of approximating 
continuous functions, as opposed to an algorithm used only for 
classification that outputs discrete classes. This can be 
formalized as: the output of the network, defined by 

j :Ân®Âm
, where for a small vector 

, and an input , i.e. the network output changes, even with 
a small change to the input vector. Third, NF:SAIL must 
generalize to unknown outputs, assuming the input vector for the 
unknown data point is in a portion of the input space that the 
algorithm has learned. This last requirement is simply the 
embodiment of supervised learning. Fourth, NF:SAIL must 
learn incrementally without knowledge of a dataset beyond the 
data point it is presented. This strict online learning requirement 
allows NF:SAIL to operate directly in real time environments. 

II. THE NEURAL FIELD ALGORITHM 

In order to learn incrementally while retaining previous 
information, function information must be stored in the local 



input space around individual neurons, as opposed to globally 
on all neurons. With this local storage, we can learn part of a 
function in one portion of the input space, and then learn another 
part of the function in another portion of the input space, without 
overriding the obtained knowledge. The key to this local storage 
is the neural contribution, which is mathematically formalized 

as a radial basis function. Given an input vector  , a neuron 

center  , and a Gaussian variance v , our radial basis 

function computes the neuron contribution  cn  as: 

 (1) 

With this Gaussian representation, the neuron contribution  

cn approaches 1 as the distance between the neuron center 

and the input vector  approaches 0. Conversely, the neuron’s 
contribution approaches 0 as distance approaches ∞. The 

variance determines how quickly cn  approaches 0. This 

property makes the neuron contribution essential for storing 
function information in local neuron space. 

A. Learning the Output 

The NF:SAIL output is calculated through the standard 
radial basis function (RBF) rule [8, 9]. Normalization by total 
contribution is added for a smooth transition between learned 
data points to improve generalization. Given the neuron output 

, and mnetwork neurons, the network output  is: 

 (2) 

Instead of directly calculating the matrix inverse to obtain 
the neuron outputs [8], we use an iterative learning rule to allow 

for incremental learning. We adjust  towards a given target 

vector , without overriding parts of the function in another 
portion of this input space, by scaling the neurons rate of change 
by its percent of contribution. 

 (3) 

where m is a user provided learning rate, 0 < m £1.0 . With 

this rule, the closer a neuron is to the input vector , the faster 
it is adjusted, which prevents information stored in distant 
neurons from being overridden by new data points. 

B. Positioning Neurons 

Since the goal is to store function information spatially, 
neurons should cover the input space. Clustering is often 
employed for this purpose. However, most clustering methods 
require a known dataset, contradicting our requirements. 
Incremental clustering can be performed by a self-organizing 
map (SOM), but the movement of neurons in a SOM rapidly 
overrides previously learned data points. Instead, an ordered 
grid of static neurons allows complete coverage while 
effectively retaining learned information. Fig. 1 shows 9 
neurons covering a 2-dimensional input space spanning from -1 
to 1. Points represent neuron centers. Circles visualize a low 
neuron contribution of 0.01. Positioning neurons with overlap 
allows for generalization, as in the tile coding and RBF methods 
popular in reinforcement learning [3]. 

With the 9 neurons in Fig. 1, very limited information can be 
stored. Given two data points with similar input vectors and 
dissimilar output vectors, only one of these points could be 
learned on a small number of neurons. Since only a small 
amount of information can be stored in this portion of the input 
space, we say it has a coarse resolution. To improve the 
resolution, and, therefore, the amount of information that can be 
stored, we decrease the distance between neurons, thereby 
increasing the number of neurons in a given portion of the input 
space (Fig. 2). This greater information density comes at the cost 
of greater computation and the risk of over fitting, a common 
tradeoff in supervised learning. 

C. Accessing Neurons 

The naive approach of pre-generating neurons to cover an 
input space presents a number of problems. First, the number of 
neurons required increases exponentially with the 
dimensionality of the input space. Iterating over every neuron to 
acquire the output vector becomes unfeasible with high 
dimensional input spaces. Second, the many neurons required to 
cover a high dimensional input space necessitate a large amount 
of memory. Third, it requires a known input space. However, 
many problems dynamically generate data points through real 
time experience or nondeterministic simulations. Such data 
points can unexpectedly appear beyond the bounds of a set input 
space. If neurons do not cover these unexpected data points, 
learning and generalization is compromised by the same 
principle of too coarse resolution covered in section 2.2. 

The solution to these problems is conceptually simple and 
elegant. With static neuron positions and variance, we know the 
sphere of influence of every neuron before allocation in 
memory. The key is an algorithm to determine the positions of 
neurons around an input with contribution greater than some 

threshold ct . First we must know the distance d  at which a 

neuron with variance v  has a contribution of ct : 

dt = v log 1
ct( )  (4) 



Given a hypersphere of radius dt , centered on an input i , 

and a grid of points spaced m  apart, we can determine all points 
on the grid within the given hypersphere. 

 

 

 

Fig. 1. Neuron positions in 2 dimensions 

 

 

Fig. 2. Finer resolution neuron positions 

Following the pseudocode in Table 1, each recursive 
iteration determines one coordinate for a set of points on the 
grid, then constrains the next function call according to this 
coordinate. Once the coordinates of the last dimension are 
determined, all coordinates are concatenated to generate a set of 
vectors for points on the grid within the hypersphere. This 
technique efficiently computes all positions without checking 
any points beyond the hypersphere. By calling this function with 
an input vector and distance threshold, we obtain the grid 
positions of all neurons that provide a significant contribution to 
the input. 

With positions known, a hash table mapping position to neuron 
allows access to each neuron in constant time. This hash-field 
solves the time complexity problem. With a small extension, we 
solve the memory complexity and out of bounds problems. 
Instead of pre-generating every neuron, we wait until the neuron 
is required. If the neuron exists, we return it immediately, 
otherwise, we create the neuron and assign it to the hash-field 
before returning it. This procedure, commonly known as lazy 
evaluation, allocates only neurons in the space around inputs. 

D. Adaptive Variance 

As dimensionality of data increases, the maximum distance 
between data points and neurons also increases. In the worst 

case, for a given variance v , the furthest data point may have 
no neurons within the distance given by (4). The result is an 

inability to learn. Both increasing v  and a finer resolution 

TABLE I.  ALGORITHM  

_________________________________________________ 

GridPoints (center c, radius r) 
 If c  contains 1 coordinate 

  Let s =  closest first coordinate on grid > c0 - r( )  

  Let e =  closest first coordinate on grid < c0 + r( )  

  Return all coordinates from s  to e  spaced m  apart 

 

 Set P =  an empty list 

 Set x =  closest first coordinate on grid > c0 - r( )  

 While x £ c0 +1 

  Let r2 = r2 - x -c0( )
2

 

  For partial point p in GridPoints c1..n,r2( )do 

   Let j = x  concatenated with p  

   Add j  to list P  

  End for 
  Set x = x+m  

 End while 
 Return P 
 

Call GridPoints i,dt( )  

_________________________________________________ 



solve this problem, but increase computation and memory 
usage. Instead, variance can adapt to the needs of a particular 
input, allowing efficient computation and learning on all data 

points. Given the distance to the closest neuron, d , and a user 

provided variance scaling factor s : 

v =
d + s log 1+ d( )( )

2

log 1
ct( )

 (5) 

where ct  is the contribution cutoff value. 

With (5), every input is covered by at least 1 neuron. Fig. 3 
and 4 depict adaptive variance. Squares represent inputs. Points 
represent neuron centers. Circles visualize a low neuron 
contribution of 0.01. Inputs very close to a neuron rely entirely 
on that output of that neuron (Fig. 3), while inputs far from any 
neuron rely on the combination of several nearby neurons (Fig. 
4). The learning and generalization capabilities of the network 
remain the same, but unnecessary computation is avoided. As 
such, the advantage of guaranteed coverage of the input space is 
maintained for all resolutions, while computational and memory 
complexity is optimized. 

III. RESULTS AND COMPARATIVE ANALYSIS 

These tests prove the four requirements for NF:SAIL, i.e. the 
ability to retain learned data points after repeated presentation of 
other data points, the ability to approximate functions, 
generalization to unknown inputs, and learning incrementally. 
In each experiment formulation, we conduct comparative tests 
with two incremental learning architectures: MLP and RBF. 
MLP is presented in its online learning mode, and is commonly 
used in reinforcement learning [4, 5]. RBF is chosen because it 
bears commonalities with NF:SAIL through its local output 
calculation. While there are many other kernel-based and 
supervised algorithms, we avoid batch learning systems due to 
their requirement for a previously known dataset, which 
contradicts the requirements of reinforcement learning. Each 
requirement is presented in its own subsection with appropriate 
datasets. The function approximation, classification, and 
regression tests feature a 3-fold cross validation method for the 
analysis of results. 

A. Retention of Previously Learned Data 

While effective classification or regression are essential for 
any supervised learning system, NF:SAIL is primarily designed 
for the ability to retain learned information after many iterations 
of learning new data points, without revising previous data 
points. We refer to the initially learned data points as stagnant 
data. 

 In the absence of standard testing methods to demonstrate 
this ability, we devise a test wherein a supervised learner is 
trained on one half of a dataset until convergence (error < 0.02), 
then the second half of the dataset until convergence. Finally, 
the learner is tested on the first half of the dataset, the stagnant 
data. If the learner has a low error on the first set, we say that it 

can retain stagnant data, otherwise, the learner forgets stagnant 
data. In order to isolate the learner’s ability to retain stagnant 
data from its ability to generalize, we use datasets of randomly 
generated data points. 

Each dataset consists of 10 data points. Each data point has 
a single input and a single output value. Each value is randomly 
chosen from a range of -1.0 to 1.0. This test is run 100 times with 
100 different random datasets. The NF:SAIL is configured with 
a resolution of 0.005, a learning rate of 1.0, and variance scaling 
of 1. The MLP is configured with a hyperbolic tangent transfer 
function for the hidden layer and a linear transfer function for 
the output layer, a learning rate of 0.05, a momentum of 0.015, 
and 1 to 20 hidden neurons, increased until the MLP can 
converge. The RBF has 40 neurons, and uses the same output 
learning mechanism as the NF:SAIL, with a learning rate of 
0.0125. However, the kernel 

 

Fig. 3. Adaptive variance with input near neuron 



 

Fig. 4. Adaptive variance with input far from neurons 

centers for the RBF are positioned with a self-organizing map 
(SOM) with a neighborhood of 2, a movement rate of 0.1 for the 
closest neuron, 0.0368 for the nearest neighbor, and 0.0018 for 
the second nearest neighbor. The mean retention error and 
standard deviation for each learner is presented in Table 2. 

The proposed NF:SAIL algorithm shows exceptional ability 
to retain stagnant data, with a retention error near the 
convergence threshold. The MLP and RBF rapidly override 
stagnant data to converge on the new set of data. Despite the 
RBFs similar output and learning mechanism, the movement of 
neuron positions proves a major disadvantage over NF:SAILs 
static neuron centers. The detriments of MLP presented in [4] 
are only reinforced by these results. With the ability to 
consistently retain previously learned information, NF:SAIL 
can effectively learn as information is presented, without 
revisiting previous data points. An ability absent in the current 
state of the art for supervised learning. 

Since the resolution of NF:SAIL determines how much 
information can be stored in a given portion of the input space, 
retention ability is also affected. Fig. 5 demonstrates this 
dependence by plotting the mean retention error against the 
resolution of a NF:SAIL. Mean retention error is determined 
with the same test as Table 1. Only resolution is adjusted. 
Despite noise caused by the stochastic nature of this test, the 
correlation makes it clear that finer resolution allows for greater 
retention of stagnant data. Furthermore, NF:SAIL, even with 
coarse resolution, shows an ability to retain data beyond both the 
compared algorithms. 

B. Classification and Regression 

To test the classification and regression abilities of the 
NF:SAIL, we perform 3 fold cross validation on the popular iris 
[10] and cancer [10, 11] classification datasets, as well as the 

California housing [12, 13, 14] and a sine regression dataset, and 
compare the performance of NF:SAIL to MLP and RBF.  These 
use the same architecture as our previous tests, and 
hyperparameters are manually adjusted for each dataset. The 

sine dataset consists of 300 random inputs from 0 to 3p  with 
corresponding outputs generated from the trigonometric sine 
function. The nonlinearity of the sine function makes it useful 
for benchmarking function approximation [14, 15]. The number 
of iterations until convergence, or a reached limit, is recorded 
for each fold, and the mean of these values is presented. Mean 
squared error for both training and testing sets is also recorded, 
and the mean of folds presented. Standard deviation (SD) is also 
presented for each metric. The results are shown in Table 3. 

For the iris dataset, the NF:SAIL has a resolution of 0.25, 
and a set variance of 0.125. The MLP has 4 hidden neurons, a 
learning rate of 0.25, and a momentum of 0.1. The RBF has 30 
neurons, a learning rate of 0.15, and a maximum of 5000 
iterations. For the cancer dataset, the NF:SAIL has a resolution 

TABLE II.  RETENTION TEST RESULTS 

 NF MLP RBF 

Avg Retention MSE 0.0891 0.6687 1.1391 
Standard Deviation 0.1357 0.4853 2.0981 

 

 

Fig. 5. Effect of resolution on retention ability 

of 0.75, and variance scaling of 2. The MLP has 10 hidden 
neurons, a learning rate of 0.05, and a momentum of 0.01. The 
RBF has 3 neurons, a learning rate of 1.0, and a max of 100 
iterations, which is chosen because no improvement in training 
error is seen after 100 iterations. For the California housing 
dataset, the NF:SAIL has a resolution of 0.5, variance scaling of 
1, and a max of 10 iterations. The MLP has 10 hidden neurons, 
a learning rate of 0.1, a momentum of 0.025, and a max of 1000 
iterations. The RBF has 24 neurons, a learning rate of 0.125, and 
a max of 100 iterations. For the sine dataset, the NF:SAIL has a 
resolution of 0.25, and a set variance of 0.125. The MLP has 12 
hidden neurons, a learning rate of 0.04, and a momentum of 
0.02. The RBF has 12 neurons, and a learning rate of  0.25. For 
all datasets, the NF:SAIL has a learning rate of 1.0. 



NF:SAIL proves its ability to effectively generalize on all 
datasets, surpassing the similar RBF network in all cases. 
Despite using the same output learning and calculation method, 
the NF:SAILs ability to effectively process large numbers of 
neurons, with guaranteed coverage of the input space, proves an 
advantage over the RBFs moving neurons. By surpassing all 
other algorithms on the housing and sine dataset regression 
problems, NF:SAIL proves its ability to effectively generalize 
with continuous inputs and outputs with remarkable 
effectiveness. 

We emphasize that NF:SAIL is not intended to outperform 
the state of the art in classification and regression. Instead, 
NF:SAIL provides the unique ability to effectively retain 
learned information without revising previous data points. 
Regardless, NF:SAIL displays classification and regression 
abilities that closely match the state of the art. 

On all datasets, NF:SAIL converges remarkably quickly. 
With this consistency, one can trust NF:SAIL to perform well 
once configured for a given problem. Most supervised 
algorithms are sensitive to hyperparameter values, requiring 
constant adjustment to maintain performance while data points 
in a real time dataset change. This concept is illustrated in Fig. 
6, where various hyperparameters for MLP are tested on the iris 
dataset. Hidden neurons are always 4. Even small adjustments 
result in instability, lack of convergence, or even divergence. 
This sensitivity wastes human resources on hyperparameter 
adjustment. Fig. 7 presents the same test for NF:SAIL. Variance 
is always half of resolution. NF:SAIL proves robust to 
hyperparameter adjustment with remarkable  

 

Fig. 6. MLP hyperparameter comparison 

 

 

Fig. 7. NF:SAIL hyperparameter comparison 

 

performance despite non-optimal adjustment, saving time and 
human resources, allowing for high autonomy and low cost. 

IV. CONCLUSIONS 

In this paper, we introduce a new supervised learning 
algorithm that uses a static ordered grid of radial basis function 
neurons featuring neuron contribution (1), which is at the heart 
of the algorithms abilities. Through the tests in section 3.1 and 
3.2, we have shown that NF:SAIL has the distinct advantage of 
effectively retaining previously learned data points even after 
converging on new data points. We have also shown that the 
proposed NF:SAIL can effectively generalize on classification 
and regression tasks. Finally, we presented a mechanism for 
efficient lazy evaluation of static neurons in an infinite grid. 

NF:SAILs ability to train on new data points without 
overriding previously learned information, and its ability to 
effectively generalize, make it an ideal algorithm for learning in 
continuous real time environments. When a massive number of 
data points can be seen, and each data point is unique, it is 
infeasible to store every data point for training. Instead, the 
learner must learn from each data point as it is presented, without 
overriding information from previous data points, even if a 
portion of the input space remains unvisited for many iterations. 

Examining problems beyond real time learning, NF:SAILs 
exceptional ability to retain learned information while training 
allows one to efficiently update the network when new data 
points are obtained. Simply feeding new data points to NF:SAIL 
allows for efficient convergence without retraining on the set of 
all previous and new data points. An ability absent in state of the 
art supervised learning methods. 
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TABLE III.  DATASET COMPARISONS 

 Iris Dataset Cancer Dataset California Housing Dataset Sine Dataset 

 NF:SAIL MLP RBF NF:SAIL MLP RBF NF:SAIL MLP RBF NF:SAIL MLP RBF 

Mean 

Iterations 
17.33 1979 5000 13.66 198.7 100 10 1000 100 1 484 20.66 

Mean 

Training 
Error 

0.019 0.038 0.089 0.019 0.018 0.227 0.037 0.068 0.165 0.0022 0.0346 0.0174 

Mean 

Testing 

Error 

0.079 0.063 0.155 0.105 0.076 0.228 0.054 0.068 0.165 0.0022 0.0329 0.0197 

Iterations 

SD 
4.03 2167 0 3.09 108.7 0 0 0 0 0 378.87 4.921 

Training 

Error SD 
0.000 0.023 0.012 0.000 0.004 0.006 0.002 0.001 0.005 0.0002 0.0301 0.0021 

Testing 
Error SD 

0.021 0.023 0.015 0.033 0.007 0.022 0.007 0.003 0.004 0.0001 0.0263 0.0040 

 


