
Infinite Lattice Learner: An Ensemble For Incremental Learning
Justin Lovinger∗, Iren Valova†

Computer and Information Science Dept,
University of Massachusets Dartmouth, MA

Abstract
The state-of-the-art in supervised learning has developed effective models for learning, generalizing,

recognizing faces and images, time series prediction, and more. However, most of these powerful models
cannot effectively learn incrementally. Infinite Lattice Learner (ILL) is an ensemble model that extends
state-of-the-art machine learning methods into incremental learning models. With ILL, even batch
models can learn incrementally with exceptional data retention ability. Instead of continually revisiting
past instances to retain learned information, ILL allows existing methods to converge on new information
without overriding previous knowledge. With ILL, models can efficiently chase a drifting function without
continually revisiting a changing dataset. Models wrapped in ILL can operate in continuous real-time
environments where millions of unique samples are seen every day. Big datasets too large to fit in memory,
or even a single machine, can be learned in portions. ILL utilizes an infinite cartesian grid of points with
an underlying model tiled upon it. Efficient algorithms for discovering nearby points and lazy evaluation
make this seemingly impossible task possible. Extensive empirical evaluation reveals impressive retention
ability for all ILL models. ILL similarly proves its generalization ability on a variety of datasets from
classification and regression to image recognition.

Keywords Supervised Learning, Incremental Learning, Ensemble Learning, Neural Networks

1 Introduction
With a growing need for real-time learning and the rise of big data, incremental learning is becoming ever
more important. Some models are developed with a focus on incremental learning, but as the no free lunch
theorem states: no one method is optimal for every problem. A large archive of existing models exist to
solve particular problems. Deep learning is effective on vision and audio problems, random forests excel at
classification, and support vector machines overcome noisy problems. When one of these problems are found
to need incremental learning, it is unfortunate to abandon existing effective models. Infinite Lattice Learner
(ILL) enables these existing models to perform incremental learning by simply wrapping them, without
modification, in an ILL ensemble.

While incremental learning (Gepperth and Hammer, 2016) has garnered multiple meanings, in this paper
we explore incremental learning w.r.t. learning from small subsets of an unknown data distribution while
retaining information learned from previous data. An incremental learning model must meet the following
criteria (Polikar et al., 2001):

1. It must be capable of learning from presented data, i.e., it must be a learning model.

2. It must retain previously learned information after learning from newly presented data, without re-
quiring access to previous data, i.e., it must retain data.

We provide an additional criteria, not intrinsic to the definition of incremental learning, but essential for
application in many problem spaces:

∗jlovinger@umassd.edu
†iren.valova@umassd.edu

1

mailto:jlovinger@umassd.edu
mailto:iren.valova@umassd.edu


3. Its memory usage must not scale infinitely with number of samples, i.e., 𝑀 ̸→ ∞ as 𝑛→∞, where 𝑀
is memory usage, and 𝑛 is the number of samples. In other words, memory must be finite and bounded
regardless of how many or how often samples are presented.

Many state-of-the-art incremental learning algorithms rely on building an increasingly complex set of models
as data is presented, and thus violate this criteria. ILL performs incremental learning with exceptional
accuracy without violating criteria 3. The majority of learning models attempt incremental learning via
catastrophic forgetting, which destroys the current model and retrains a new model on the entire set of
presented data. Catastrophic forgetting does not meet the criteria we give for incremental learning, but ILL
allows these models to learn incrementally without catastrophic forgetting.

Reinforcement learning (RL) is a particular application with great need for incremental learning. RL,
inspired by the Pavlovian reflex and the ability of biological brains to learn from positive and negative
reinforcement, is often formulated as a function mapping a state and action space to a reward value. This
Q learning (Watkins, 1989; Watkins and Dayan, 1992; Sutton and Barto, 1998) problem commonly uses
supervised learning algorithms to learn 𝑄 : 𝑆 × 𝐴 → 𝑅 (Sutton and Barto, 1998; Riedmiller, 2005; Lange
and Riedmiller, 2010). RL problems in continuous problem spaces can generate millions of samples in real
time. Attempting to learn such a massive dataset, in its entirety and in real time, is impractical. Instead, 𝑄 is
learned incrementally, as samples are discovered. A popular potential solution is a sliding window, where only
the 𝑛 most recent samples are presented to the learning model, where 𝑛 is the size of the window. The model
can fully train on this window of 𝑛 samples and effectively learn it, regardless of incremental learning ability.
However, the model will retain only recent data, as dictated by the size of 𝑛 (Riedmiller, 2005). Clearly, this
is not ideal. This problem has been solved by storing all samples in a growing dataset (Riedmiller, 2005),
but this method is infeasible for long learning sessions in continuous problem spaces.

ILL, inspired by Neural Field (Lovinger and Valova, 2016), uses an infinite cartesian grid of points.
Similar to the popular k-nearest neighbor (KNN) and radial basis function network (RBF) algorithms, ILL
classifies and performs regression based on similarity between an input vector and nearby points. Unlike
KNN and RBF, each nearby point corresponds to a user defined learning model. Output and learning are
delegated, by ILL, to these nearby models. In this manner, ILL retains the characteristics of its underlying
model, while providing exceptional retention ability through an ensemble of such models tiled upon a static
grid of points.

The next section provides background on incremental learning. Section 3 details the ILL algorithm.
Section 4 presents Neural Field as a special case of ILL. Section 5 provides extensive benchmarking and
comparative analysis to empirically prove the effectiveness of ILL. Finally, Section 6 concludes.

2 Incremental Learning
The goal of incremental learning (Gepperth and Hammer, 2016) is to learn a function in pieces, as new infor-
mation or samples are observed. By contrast, batch learning assumes a full static dataset, allowing effective
hyperparameter optimization, model selection, and training. Agents operating in real time environments,
such as autonomous robots and cars, must learn from a constant stream of data. Many online applications
use a constant stream of user feedback to train incremental learning systems. With big datasets too large
to fit in memory, data must be fed to learning models in incremental portions.

The simplest approach to incremental learning is the use of a model effective for batch learning with a
training algorithm suitable for streaming data. Regression models, such as linear regression (Neter et al.,
1996; Seber and Lee, 2012; Montgomery et al., 2015), can be incrementally trained with stochastic gradient
descent, or any numeric optimization method that does not rely on information from previous iterations.
Support vector machines (SVM) (Cortes and Vapnik, 1995; Pradhan, 2013; Rebentrost et al., 2014) are
similarly compatible with incremental numeric optimization. Multilayer perceptrons (MLP) (Tagliaferri
et al., 2003; Hagan et al., 1996; Gatys et al., 2015) have found popularity in incrementally learning a reward
function for reinforcement learning (Watkins, 1989; Watkins and Dayan, 1992; Sutton and Barto, 1998).
Like regression and SVM, MLP can be trained incrementally with various gradient descent methods. Radial
basis function networks (RBF) (Lowe and Broomhead, 1988; Broomhead and Lowe, 1988; Tan et al., 2001)
and self organizing maps (SOM) (Kohonen, 1982; Kohonen, 1990; Kalteh et al., 2008) also have natural
training mechanisms for incremental learning.

2



Figure 1: A cartesian grid with grid spacing 𝑔 = 0.5

Explicit partitioning of the input space is a popular technique in modern incremental learning (Gepperth
and Hammer, 2016; Polikar et al., 2001). Gaussian mixture distributions have found use in incremental
learning by leveraging the local learning characteristics of a Gaussian distribution (Cederborg et al., 2010).
Decision trees are also known to naturally partition an input space, and incremental variants have been
explored (Utgoff, 1989; Jiang et al., 2013; Rutkowski et al., 2014). The cartesian grid of ILL performs an
overlapping partition of the input space, borrowing the advantages of partitioning methods.

Another technique to enable incremental learning is an ensemble of models with individually poor incre-
mental learning ability. Learn++ (Polikar et al., 2001) uses an ensemble of weak neural networks to learn
incrementally. Random forest, a state-of-the-art ensemble for non-incremental learning, has been extended
to incremental learning (Ma and Ben-Arie, 2014; Ristin et al., 2016). Unlike ILL, many such ensembles add
new model instances to the ensemble as new samples are presented. This presents a challenge for big data
problems with quickly streaming data, as the size of the ensemble rapidly grows beyond memory limits. ILL
aims to remedy this issue by partitioning the ensemble into parts of the input space, providing an upper
bound on size regardless of how often new samples are presented.

3 The Infinite Lattice Learner Algorithm
ILL enables incremental learning by generating an ensemble of learning models in an ordered cartesian grid,
depicted in Figure 1. Each grid point 𝑝 in this cartesian grid has a corresponding model 𝑚𝑝. The output
�⃗�𝑚𝑝 of each model 𝑚𝑝 is scaled by distance between the input �⃗� and its corresponding grid point 𝑝 in the
input space. In this way, information is stored in the local input space around model points, as opposed
to globally in an individual model. With this local storage mechanism, we can learn part of a function in
one portion of the input space, and then learn another part of the function in another portion of the input
space without overriding the obtained knowledge. In short, ILL divides the problem space into an ordered
grid and trains one model for each cell in this grid. A weighted sum of these models allows generalization
between input vectors corresponding to separate cells.

3.1 Neighborhood
With an infinite grid of points, efficient algorithms are essential to obtain the points most essential to a given
activation of ILL. For an input vector �⃗�, the points near �⃗� are intuitively essential. Formally, the distance
between �⃗� and any obtained point 𝑝, ‖�⃗�− 𝑝‖, should be a small value.

Each point 𝑝 can correspond to a learning model 𝑚𝑝. These models can individually learn and generalize.
By, for each input �⃗�, obtaining points in the neighborhood 𝑁 around �⃗�, we efficiently partition a problem by

3



its input space. Training a separate model for each 𝑝 ∈ 𝑁 , for each 𝑁 corresponding to an input �⃗�, allows
us to learn incrementally, one subset of the input space at a time. By overlapping sets, we retain the ability
to effectively generalize.

With ∞ points and ∞ models corresponding to points, pre-initializing models is not feasible. Instead,
lazy evaluation allows ILL to initialize models as they are needed. When a nearby point 𝑝 is discovered by a
neighborhood function, ILL attempts to retrieve the corresponding model 𝑚𝑝 from a hash table. If 𝑚𝑝 does
not exist, it is initialized and stored in the hash table.

Standard methods for obtaining points in a neighborhood around a central point are infeasible on an
infinite grid. However, with the cartesian ILL grid, the position of every point is known a-priori given only
grid spacing 𝑔. Efficient analogs for popular neighborhood functions can be developed to work on an infinite
cartesian grid. The particular neighborhood function used with ILL is an interchangeable hyperparameter.
Some useful neighborhood functions are provided here.

3.1.1 Radius

A natural approach to finding points near a center �⃗� is to return all points within a given radius of �⃗�. The
grid points algorithm presented in Neural Field (Lovinger and Valova, 2016) can efficiently find all points
around �⃗� within radius 𝑟 on a cartesian grid with 𝑔 spacing. This algorithm is re-stated in Algorithm 1 for
convenience. See Appendix A for a note on implementing Algorithm 1 with floating point math. An example

Algorithm 1 Radius Points
function radius_points(center �⃗�, radius 𝑟)

�⃗�1 ← the first component of �⃗�
if �⃗� contains only 1 component then

𝑠← 𝑔⌈(�⃗�1 − 𝑟)/𝑔⌉ ◁ smallest number on grid ≥ (�⃗�1 − 𝑟)
𝑒← 𝑔⌊(�⃗�1 + 𝑟)/𝑔⌋ ◁ greatest number on grid ≤ (�⃗�1 + 𝑟)
return all numbers from 𝑠 to 𝑒 spaced 𝑔 apart.

end if
�⃗�2... ← a vector slice containing all components after and including the second component of �⃗�
𝑃 ← an empty list
𝑥← 𝑔⌈(�⃗�1 − 𝑟)/𝑔⌉ ◁ smallest number on grid ≥ (�⃗�1 − 𝑟)
while 𝑥 ≤ �⃗�1 + 𝑟 do

for partial point 𝑝 in radius_points(�⃗�2...,
√︁

𝑟2 − (𝑥− �⃗�1)2) do
𝑗 ← 𝑥 concatenated with 𝑝
Add 𝑗 to list 𝑃

end for
𝑥← 𝑥 + 𝑔

end while
return 𝑃

end function

of Algorithm 1 is given in Figure 2.
ILL can use Algorithm 1 to find neighborhood points near an input vector �⃗�. When used with ILL, �⃗� = �⃗�.

Choice of radius 𝑟 can drastically affect performance. If 𝑟 is too small, Algorithm 1 may return 0 points. If
𝑟 is too large, ILL can waste computation on an unnecessarily large number of points. A simple heuristic
can effectively select 𝑟 based on �⃗�. When �⃗� is near a grid point, 𝑟 can be very small; when �⃗� is far from a
grid point, 𝑟 is increased:

𝑟 = 𝑑(�⃗�, 𝑝𝑐) + 𝑠 log(1 + 𝑑(�⃗�, 𝑝𝑐)) (1)

where 𝑑 is distance; 𝑠 ≥ 0 is a scaling factor; and 𝑝𝑐 is the point closest to �⃗�, which is easily calculated
by rounding each component of �⃗� to the nearest multiple of 𝑔. Selecting 𝑠 = 1/𝑁𝑑, where 𝑁𝑑 is the
dimensionality of the neighborhood, is effective in practice.

4



Figure 2: Algorithm 1 discovering all points within radius 𝑟 = 0.65 of vector �⃗�.

3.1.2 K-Nearest Neighbors

By leveraging Algorithm 1, a k-nearest neighbors (KNN) neighborhood function, interchangeable with Al-
gorithm 1, is easily developed. Starting with a small radius 𝑟 = 𝜖, 𝑟 can incrementally increase by a user
selected rate factor 𝛼 > 1 until 𝑘 points are within a hyper-sphere of radius 𝑟 centered at �⃗�. Because the
performance of Algorithm 1 scales with the number of points returned, this KNN variant has acceptable
performance as long as 𝑘 is not excessively large.

Pseudo-code is given in Algorithm 2. Note that Algorithm 2 can return more than 𝑘 points if radius

Algorithm 2 KNN Points
𝑟 ← 𝜖
𝑃 ← radius_points(�⃗�, 𝑟)
while |𝑃 | < 𝑘 do

𝑟 ← 𝛼𝑟
𝑃 ← radius_points(�⃗�, 𝑟)

end while
return 𝑃

scaling factor 𝛼 is not sufficiently small. Points 𝑃 can be truncated by trimming all but the 𝑘 nearest
points, or left as is for a |𝑃 | ≈ 𝑘 algorithm. Decreasing 𝛼 so that Algorithm 2 never returns more than 𝑘
points results in unsatisfactory performance and is a poor solution. Empirical tests show that a rate factor
𝛼 ≈ 1.2 is effective when 𝑃 is truncated, and 𝛼 ≈ 1.02 is effective when 𝑃 is not truncated. An example of
Algorithm 2 is given in Figure 3.

3.2 Similarity
With an infinite grid of points, ILL requires a neighborhood function to select points near an input vector
�⃗�, as seen in Section 3.1. While a neighborhood function allows local storage of information, it is a coarse
mechanism that doesn’t differentiate between how close points are, as long as they are close enough to be
in the local neighborhood. This mechanism can be refined with the use of a similarity function. Given two
points 𝑝1 and 𝑝2, if 𝑝1 is closer to �⃗� than 𝑝2, formally ‖𝑝1− �⃗�‖ < ‖𝑝2− �⃗�‖, corresponding model 𝑚𝑝1 should
contribute more to the ensemble output than 𝑚𝑝2 . The precise degree of contribution is determined by a
similarity function.

5



Figure 3: Algorithm 2 discovering the 𝑘 = 3 nearest points. With an initial radius 𝑟1 = 0.25, 𝑟 increases by
a factor of 𝛼 = 1.2 until the circle with 𝑟4 = 0.43, centered at �⃗�, contains 3 points.

A similarity function is a radial basis function 𝜑(·, ·) that satisfies the condition

𝜑(⃗𝑎1, �⃗�) ≥ 𝜑(⃗𝑎2, �⃗�) for all �⃗�1, �⃗�2, �⃗� ∈ R𝑛 given ‖�⃗�1 − �⃗�‖ < ‖�⃗�2 − �⃗�‖ (2)

A similarity function does not decrease in value when distance between its arguments �⃗� and �⃗� decreases.
Useful, but not necessary, conditions for a similarity function are: it is continuous; it monotonically increases
in value as distance decreases. A similarity function is maximized when ‖�⃗� − �⃗�‖ = 0 and minimized when
‖�⃗�− �⃗�‖ =∞. Note that, as a radial basis function, a similarity function also has the condition that its value
depends only on the distance between its arguments.

A popular similarity function is the Gaussian

𝜑(⃗𝑎, �⃗�) = 𝑒−( ‖�⃗�−�⃗�‖2
𝑣 ) (3)

where 𝑣 is a variance parameter. With this Gaussian similarity function, 𝜑(⃗𝑎, �⃗�) approaches 1 as the distance
between �⃗� and �⃗� approaches 0. Conversely, 𝜑(⃗𝑎, �⃗�) rapidly approaches 0 as distance approaches ∞.

The Gaussian similarity function is found to perform better with ILL when there is a significant difference
between the similarity of points 𝑝 in the neighborhood 𝑁 around �⃗�. A formula to scale 𝑣 by distance between
furthest 𝑝 ∈ 𝑁 and �⃗� ensures highly variable similarity,

𝑣 = max𝑝∈𝑁 ‖𝑝− �⃗�‖
ln(1/𝑠𝑓 ) (4)

where 𝑠𝑓 is desired similarity of the furthest model point.
Normalizing similarity of all points 𝑝 ∈ 𝑁 to a sum of 1 improves the consistency of a similarity function.

A Normalized similarity function, called on a point 𝑝0 and an input vector �⃗�

𝜑𝑛(𝑝0, �⃗�) = 𝜑(𝑝0, �⃗�)∑︀
𝑝∈𝑁 𝜑(𝑝, �⃗�) (5)

divides each similarity by the sum of all relevant similarities. As is seen in Section 3.3, normalizing similarity
can improve generalization of the ILL ensemble by providing a smooth transition between learned samples.

3.3 Output and Learning
After all points 𝑝 in the local neighborhood 𝑁 around a given input �⃗� are determined (see Section 3.1 for
details), the ILL output �⃗� is a sum of outputs �⃗�𝑚𝑝 = 𝑚𝑝(�⃗�) from each model 𝑚𝑝 corresponding to points

6



𝑝 ∈ 𝑁 . To better differentiate between points 𝑝 ∈ 𝑁 , this sum is weighted by similarity 𝜑(𝑝, �⃗�)

�⃗� =
∑︁
𝑝∈𝑁

𝜑(𝑝, �⃗�)�⃗�𝑚𝑝 (6)

Note that normalizing the similarity function (5) can improve generalization.
Every iteration, each model 𝑚𝑝 corresponding to a point 𝑝 ∈ 𝑁 is activated to obtain �⃗�𝑚𝑝 = 𝑚𝑝(�⃗�),

and all model outputs �⃗�𝑚𝑝∀𝑝 ∈ 𝑁 are combined to obtain the ILL output �⃗�. Adjusting �⃗� towards a target
vector �⃗� therefore requires adjusting �⃗�𝑚𝑝∀𝑝 ∈ 𝑁 . This can be accomplished by generating a target variable
�⃗�𝑚𝑝 for each 𝑝 ∈ 𝑁 and training each 𝑚𝑝 to output �⃗�𝑚𝑝. Note that the training of an underlying model 𝑚𝑝

depends entirely on the implementation of 𝑚𝑝 and is independent of ILL. The optimal set of model targets
give �⃗� = �⃗�:

�⃗� =
∑︁
𝑝∈𝑁

𝜑(𝑝, �⃗�)⃗𝑡𝑚𝑝 (7)

which follows directly from (6).
However, there are infinite solutions to (7). Because ILL aims to enable effective incremental learning, and

large changes to model parameters are detrimental to incremental learning, we want to find the solution to
(7) that minimizes the difference between �⃗�𝑚𝑝 and the desired model output �⃗�𝑚𝑝 for all 𝑝 ∈ 𝑁 . Furthermore,
because ILL stores information locally, the closer 𝑝 is to �⃗�, the more we can change the corresponding model
𝑚𝑝 without destroying learned information. To this end, the optimal set of model targets �⃗�𝑚𝑝∀𝑝 ∈ 𝑁 is
given by

arg min
�⃗�𝑚𝑝∀𝑝∈𝑁

∑︁
𝑝∈𝑁

‖�⃗�𝑚𝑝 − �⃗�𝑚𝑝‖
𝜑(𝑝, �⃗�) (8)

under the constraint of (7). Note that the norm ‖ · ‖ is used here as a distance metric, and similar metrics,
like mean squared error, are also appropriate.

Fully solving (8) every training iteration is computationally expensive and unnecessary. Every ILL
iteration, one step can be taken towards a solution to (8), as given by a single optimization iteration. Over
multiple ILL iterations, these sequences of steps act as a full optimization procedure, converging to an
optimal set of targets. When an underlying model does not converge to its target in a single iteration, these
one-step targets prove more than sufficient, and the burden of fully solving (8) is avoided.

3.4 High Dimensional Data
The number of points in a cartesian grid scales exponentially with dimensionality 𝑑. The optimistic outcome
for ILL is that an input vector �⃗� lies near a small number of points, and the neighborhood function (see
Section 3.1) selects only these nearby points. However, if �⃗� lies in the center of a hypercube of grid points, at
least 2𝑑 points are equidistant to �⃗�, as depicted in Figure 4. On high dimensional problems, discovering 2𝑑

points with a neighborhood function becomes intractable. Note that even the k-nearest neighbors function
presented in Section 3.1 must discover all points in some radius before returning the 𝑘 nearest.

In lieu of a neighborhood function capable of efficiently discovering an exponential number of points
and mechanisms to learn an exponential number of models, dimensionality of the neighborhood must be
decreased to a reasonable number: 𝑑𝑁 . Note that dimensionality need only decrease with regard to the
neighborhood and discovery of nearby points on a cartesian grid. Underlying models can learn the original
𝑑 dimensional problem space or implement their own mechanisms for handling high dimensional data. This
separation of dimensionality allows the underlying model to maximize their learning and generalization while
avoiding the 2𝑑 nearby points problem.

A 𝑑 by 𝑑𝑁 reduction matrix 𝑀𝑁 can perform the dimensionality reduction: �⃗� × 𝑀𝑁 = �⃗�𝑁 , giving
us the reduced input vector �⃗�𝑁 . Any number of existing methods, such as principle component analysis
(PCA) (Pearson, 1901; Bengio et al., 2013; Witten et al., 2016) or linear discriminant analysis (LDA) (Fisher,
1936; Shi et al., 2014), can find an effective reduction matrix 𝑀𝑁 . However, these methods require a known
dataset. While incremental variants exist (Weng et al., 2003; Zhao et al., 2006; Balsubramani et al., 2013;
Pang et al., 2005; Zhao and Yuen, 2008), changing 𝑀𝑁 can destroy previously learned data. The retention
ability of ILL relies on a static cartesian grid, and changing 𝑀𝑁 effectively changes this grid by repositioning

7



Figure 4: Input vector �⃗� = [0.5,−0.5,−0.5] in the center of a hypercube of points, on a cartesian grid
with spacing 𝑔 = 1. The minimum radius 𝑟 = 1.225 to contain at least 1 point contains 2𝑑 points, where
dimensionality 𝑑 = 3.

all input vectors in the reduced neighborhood space. To retain retention ability, 𝑀𝑁 should remain unchanged
once set. This presents us with two options:

1. Use a random projection (Johnson and Lindenstrauss, 1984; Bingham and Mannila, 2001; Cohen et al.,
2015), without relying on a known dataset.

2. Delay learning until dimensionality reduction can be performed on the first 𝑛 samples discovered during
incremental learning, where 𝑛 can be chosen by the user.

Empirical tests show high performance with random projections. We do not see the performance drop-off
typical of a naive random projection because the random projection only reduces the ILL neighborhood
space, while underlying models use original higher dimensional input vectors.

4 Neural Field: A Special Case of ILL
The cartesian grid neighborhood and use of a similarity metric are expanded concepts from neural field
(NF) (Lovinger and Valova, 2016). Although these techniques are generalized and enhanced in ILL, using
the radius neighborhood function given in Algorithm 1 and normalized (5) Gaussian similarity (3) allow ILL
to equal NF.

The only missing piece is a choice of underlying model that matches the behavior of NF. In NF, each
grid point 𝑝 stores an output vector and the NF output is a weighed summation of these vectors, weighted
by similarity between 𝑝 and an input vector �⃗�. ILL performs an equivalent weighted summation (6) of
output vectors from each model 𝑚𝑝 corresponding to points 𝑝 in the neighborhood 𝑁 . To create an ILL
model equivalent to NF, we only need an underlying model that stores and returns a vector, which we call
a neuron.

Matching the learning rule of NF is similarly straightforward. NF updates the vector of each neuron by
taking a step toward a given target vector and scaling step size by normalized Gaussian similarity between
the neuron and an input vector. A generalization of the NF learning rule can be applied with ILL:

�⃗�𝑚𝑝 = �⃗�𝑚𝑝 + 𝜑(𝑝, �⃗�)(⃗𝑡− �⃗�) (9)

8



Figure 5: Output of linear, softplus, and softmax transfer functions. Softmax is calculated on a [𝑥, 0] vector,
and the first coordinate of softmax(𝑥) is depicted on the y axis.

Where �⃗�𝑚𝑝 is a learning target for model 𝑚𝑝 corresponding to point 𝑝, �⃗�𝑚𝑝 = 𝑚𝑝(�⃗�) is the output of 𝑚𝑝,
𝜑(·, ·) is the normalized (5) Gaussian similarity function (3), and �⃗� is the output of the ILL ensemble.

This presentation shows that NF can be formulated as an ILL ensemble with a particular, and very weak,
underlying model. With such a weak underlying model, NF heavily relies on the ILL similarity metric and
requires very low grid spacing to learn complex functions. When the ILL grid is a poor prior for a given
problem, NF will suffer low performance. By contrast, ILL with a stronger underlying model can increase
grid spacing and rely on the prior of its underlying model to achieve high performance.

5 Benchmark and Comparative Analysis
A robust comparison of ILL models with 6 state-of-the-art incremental and batch supervised learning mod-
els, proves the effectiveness of ILL. For each comparison model, an ILL ensemble of the model is included.
Additionally, neural field, the predecessor of ILL, is included for comparison. Automatic hyperparameter
selection optimizes each model, eliminating researcher bias and providing insight into effective hyperpa-
rameters. A direct comparison of incremental retention ability is performed using a retention error metric.
Finally, a robust comparison of generalization accuracy is performed, with each model learning incrementally.
Classification, regression, and high dimensional image datasets are included in this comparison.

5.1 Models
The popular multilayer perceptron (MLP) (Tagliaferri et al., 2003; Hagan et al., 1996; Gatys et al., 2015)
has found use in incremental learning problems and is especially popular for incrementally learning a reward
function in reinforcement learning (Watkins, 1989; Watkins and Dayan, 1992; Sutton and Barto, 1998;
Hausknecht and Stone, 2015; Van Hasselt et al., 2016). An MLP can be described as a function of the
form: 𝑓(�⃗�) = 𝑡𝑛...(𝑡2(𝑡1(�⃗�𝑊 1)𝑊 2)...𝑊 𝑛), where 𝑡𝑖 is the 𝑖𝑡ℎ transfer function, 𝑊 𝑖 is the 𝑖𝑡ℎ weight matrix,
and �⃗� is an input vector. MLP is trained by finding a set of weight matrices that minimize an objective
function, such as mean squared error. Our MLP models use a softplus (Glorot et al., 2011; Tóth, 2013; Maas
et al., 2013) transfer function for hidden layers, softmax transfer for output layers of classification problems,
and linear transfer for output layers of regression problems. Our chosen transfer functions are depicted
in Figure 5. Incremental training is performed with steepest descent minimizing mean squared error and
Wolfe line search (Nocedal and Wright, 2006) to select step size. Initial step size for line search is 1.5𝛼𝑛−1,
where 𝛼𝑛−1 is the step size from the previous iteration. Steepest descent and its gradient descent variants
are common in state-of-the-art incremental learning (Hazan et al., 2016; Ruder, 2016; Yoshida et al., 2017;
Variddhisaï and Mandic, 2017; Rosasco and Villa, 2015).

Radial basis function networks (RBF) (Lowe and Broomhead, 1988; Broomhead and Lowe, 1988; Tan
et al., 2001) use a combination of clustering, a similarity metric, and linear regression to perform classification

9



Figure 6: An SVM maximizing the margin between its decision boundary and samples used as support
vectors (Cyc, 2008).

and regression. During training the input space is clustered, providing a set of cluster centers 𝐶. When an
RBF network is activated, the similarity between each center �⃗� ∈ 𝐶 and an input vector �⃗� is calculated,
giving a similarity vector �⃗�. The RBF output is given by 𝑓(�⃗�) = �⃗�𝑊 , where 𝑊 is a weight matrix. Our
RBF determines 𝐶 incrementally with a Kohonen self organizing map (SOM) (Kohonen, 1982; Kohonen,
1990; Kalteh et al., 2008) with a linear neighborhood of size 2, a movement rate 𝛼0 = 0.1 for the nearest
neuron, 𝛼1 = 0.0368 for the first neighbor, and 𝛼2 = 0.0018 for the second neighbor. Normalized Gaussian
similarity (3) is our similarity function. The weight matrix 𝑊 is trained with the same state-of-the-art
incremental steepest descent algorithm as our MLP.

Linear regression (Neter et al., 1996; Seber and Lee, 2012; Montgomery et al., 2015) is a time tested
method for supervised and incremental learning. With linear regression, a function of the form 𝑓(�⃗�) = �⃗� · �⃗�
predicts a single output value, where �⃗� is a weight vector. Linear regression can be generalized to predict
an output vector: 𝑓(�⃗�) = �⃗�𝑊 , where 𝑊 is a weight matrix. A regression model is trained by finding
a weight matrix that minimizes an objective function, such as mean squared error. The performance of
regression can be improved by adding a penalty term to minimize the magnitude of weights. Using the ℓ1
norm of weights, ‖𝑊 ‖1, as a penalty factor encourages prediction using a minimum of attributes, through
a sparse weight matrix. This method, known as lasso regression (Tibshirani, 1996; Tibshirani, 2011), is
found to improve generalization (Wright et al., 2009). Our lasso implementation is provided by the scikit-
learn Python library (Pedregosa et al., 2011) and is trained incrementally with stochastic gradient descent.
Stochastic gradient descent is common in state-of-the-art incremental learning (Hazan et al., 2016; Ruder,
2016; Variddhisaï and Mandic, 2017; Ramos and Ott, 2016; Song et al., 2016; Soudry et al., 2015; Rosasco
and Villa, 2015).

The support vector machine (SVM) (Cortes and Vapnik, 1995; Pradhan, 2013; Rebentrost et al., 2014)
method is effectively an evolution of regression and has found similar popularity for incremental learning.
Using a function similar to a regression model, SVM is trained to minimize an objective that is robust to
outliers and creates an effective decision boundary, as depicted in Figure 6. This use of a unique objective
function, such as epsilon insensitive loss (Suykens and Vandewalle, 1999; Huang et al., 2012), differentiates
SVM from regression models. We include a linear SVM in our comparison. Our SVM implementation is
provided by the scikit-learn Python library (Pedregosa et al., 2011) and is trained incrementally with the
same stochastic gradient descent as our linear regression.

Random forest (RF) (Ho, 1995; Díaz-Uriarte and De Andres, 2006; Rodriguez-Galiano et al., 2012) is a
modern extension of the classic decision tree (DT) algorithm (Utgoff, 1989; Schmid, 2013; Pradhan, 2013).
Each DT in the RF trains on a subset of attributes and samples. In classic ensemble style, the output of

10



Figure 7: A decision tree predicting the survival of a passenger on the Titanic using the sex, age, and siblings
or spouses onboard attributes (Milborrow, 2011). Leaves contain samples from both classes. Under each leaf
node is probability of survival given as a decimal value and percent of samples filtered into the leaf.

individual DTs is combined with a competitive vote for classification or average for regression to form the RF
output. Individual DTs learn a sequence of if-then rules, applied on each attribute, as depicted in Figure 7.
Information theory (Shannon, 2001) remains popular for determining the attribute that best divides samples
into accurate classifications, leading to the ID3 algorithm (Quinlan, 1986). RF is a staple of state-of-the-art
supervised learning for its impressive performance and ability to avoid over-fitting as complexity increases.
Our RF implementation is provided by the scikit-learn Python library (Pedregosa et al., 2011) using default
parameters unless otherwise specified.

The k-nearest neighbors (KNN) (Altman, 1992; Weinberger et al., 2006; Muja and Lowe, 2014) method
stores training samples and makes predictions with the 𝑘 samples nearest to a given input vector. KNN
models differ by distance metric used to specify nearest and how the 𝑘 neighbors are combined to form a
model output. Euclidean distance is a common distance metric, competitive vote is a common method to
combine the k-nearest for classification problems, and taking the mean is a common method to combine the
k-nearest for regression problems. The KNN algorithm has proven effective despite, or perhaps because of,
its simplicity. Our KNN implementation is provided by the scikit-learn Python library (Pedregosa et al.,
2011) using default parameters unless otherwise specified.

For each of the above models, a variant using ILL is included. ILL models are designated: ILL(𝑚), where
𝑚 is the underlying model. Random projections are used for dimensionality reduction.

Incremental variants of RF and KNN rely on an unbounded increase in model size, by either adding
new trees to the RF ensemble or storing all samples for KNN. This size complexity is unsuitable for many
incremental learning tasks. Instead, RF and KNN are presented with catastrophic forgetting. When new
samples are presented, these models discard previously learned information and train on the new samples.
These batch learning models provide a baseline comparison to our incremental learning models and illustrate
ILL with batch models.

The neural field (NF) (Lovinger and Valova, 2016) algorithm, as detailed in Section 4, is included in our
comparison for its similarity to ILL. NF is the precursor and inspiration for ILL and our analysis shows that
ILL greatly improves on its predecessor.

Note that a number of incremental learning methods, such as Learn++ (Polikar et al., 2001), are not
included in our comparison because they violate our infinite memory criteria (criteria 3 given in Section 1)
for incremental learning.

5.1.1 Selecting Hyperparameters

When a researcher manually adjusts hyperparameters, it is possible to bias results in their favor. To eliminate
this issue of researcher bias, we automatically discover hyperparameters for all models using a brute force
optimizer, also known as grid search. Grid search ensures that all hyperparameter combinations are tested
for every model. The grid search optimizer aims to maximize accuracy (or minimize error on regression

11



problems) on a validation set. The validation set is a subset of the training set with 2/3 samples for training
the validation model and 1/3 for validation.

The optimization objective function 𝑓 for classification problems is 𝑓(𝑚, 𝐷) = acc(𝑚𝑡𝑟, 𝐷𝑡𝑒) + 0.05 ×
acc(𝑚𝑡𝑟, 𝐷𝑡𝑟), where 𝑚𝑡𝑟 is model 𝑚 after training on a training set, acc is the accuracy of a model on a
dataset, 𝐷𝑡𝑒 is the testing set of dataset 𝐷, and 𝐷𝑡𝑟 is the training set of dataset 𝐷. Some value is added
for performance on the training set to discourage over-fitting on the validation set. The objective function
for regression problems is 𝑓(𝑚, 𝐷) = (1 −mse(𝑚𝑡𝑟, 𝐷𝑡𝑒)) + 0.05 × (1 −mse(𝑚𝑡𝑟, 𝐷𝑡𝑟)), where mse is mean
squared error.

MLP models can select a number of hidden neurons 𝑛ℎ in the range [1, 64]. RBF models can select a
number of neurons 𝑛 in the range [1, 128]. Variance 𝑣 is selected with a 𝑣 = 4/𝑛 heuristic, or manually
set for some problems where low variance leads to computational errors. Lasso and SVM do not have any
hyperparameters to automatically optimize. RF models can select a number of ensemble decision trees 𝑡 in
the range [1, 32]. KNN models can select a number of nearest neighbors 𝑘 in the range [1, 32].

ILL models can select: grid spacing 𝑔 = 0.001, 0.042, 0.099, 0.180, 0.294, 0.455, 0.681, or 1.000; one of 4
neighborhood functions 𝑓𝑁 : KNN with 𝑘 = 1, 3, or 5 written as 𝑘-NN or adaptive radius with radius scaling
of 1/𝑑𝑁 , where 𝑑𝑁 is the dimensionality of the neighborhood; dimensionality reduction 𝑑𝑁 to 1 or 2 dimensions
on problems with more than 4 dimensions. Each ILL model uses an underlying model with its optimized
hyperparameters. While hyperparameters of the underlying model can be optimized independently for use
with ILL, keeping the same hyperparameters allows easier comparison between ILL and its underlying model.

5.2 Retention of Previously Learned Data
The ability to retain previously learned data enables incremental learning. As a model is presented with
new samples, iteration after iteration, its parameters are adjusted to minimize error on each sample as it
is seen. Models with high retention ability maintain low error on samples that have not been presented in
many iterations.

To test retention ability, we define a retention error metric (Lovinger and Valova, 2016). Retention error
𝑒𝑟 for model 𝑚 on dataset 𝐷 is given by Algorithm 3. By testing error on a given subset of 𝐷, after learning

Algorithm 3 Retention Error
Split 𝐷 into two disjoint sets 𝐷1 and 𝐷2
𝑚1 ← 𝑚 after training on 𝐷1 until convergence
𝑚2 ← 𝑚1 after training on 𝐷2 until convergence
𝑒𝑟 ← mse(𝑚2, 𝐷1) ◁ mse is mean squared error

it, and then training on a separate subset, 𝑒𝑟 effectively measures a models ability to retain learned data
after repeated presentation of different data. Note that this metric depends on both the models ability
to learn the first subset 𝐷1 and its ability to retain that information after training on the second subset
𝐷2. Subtracting the error obtained immediately after learning 𝐷1, as given by mse(𝑚2, 𝐷1)−mse(𝑚1, 𝐷1),
disambiguates the ability to retain information from the ability to learn. However, this results in a poor
metric that rewards an inability to learn. A hypothetical model 𝑚 that never changes has high mse(𝑚1, 𝐷1),
but mse(𝑚1, 𝐷1) ≈ mse(𝑚2, 𝐷1), resulting in 𝑒𝑟 ≈ 0 if 𝑒𝑟 = mse(𝑚2, 𝐷1)−mse(𝑚1, 𝐷1). Algorithm 3, which
depends on learning ability, is more useful in practice.

To isolate a models retention ability from its generalization ability, datasets of random samples are
generated and used for testing. Each random dataset contains 10 samples, 1 real valued attribute, and 1
real valued target. Retention error is averaged over 100 such random datasets. Every model is tested on the
same set of random datasets.

For hyperparameter optimization, retention tests use a validation set containing half as many datasets,
each with the same dimensionality and number of samples. The objective function for retention problems is
𝑓(𝑚, 𝐷) = (1− ret(𝑚, 𝐷)), where ret is retention error, as given by Algorithm 3.

12



Table 1: Model Retention Comparison
Model Mean 𝑒𝑟 Hyperparameters
ILL(MLP) 0.0036 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑛ℎ: 46
ILL(RBF) 0.0069 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑛: 118, 𝑣: 0.034
ILL(Lasso) 0.2004 𝑔: 0.001, 𝑓𝑁 : 5-NN
ILL(SVM) 0.0684 𝑔: 0.001, 𝑓𝑁 : 5-NN
ILL(RF) 0.0079 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑡: 28
ILL(KNN) 0.0078 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑘: 5
NF 0.0001 𝑔: 0.001, 𝑓𝑁 : 1-NN
MLP 0.4428 𝑛ℎ: 46
RBF 0.3528 𝑛: 118, 𝑣: 0.034
Lasso 0.3203
SVM 0.3473
RF 0.5123 𝑡: 28
KNN 0.4086 𝑘: 5

Figure 8: Relationship between grid spacing 𝑔 and retention error 𝑒𝑟

5.2.1 Retention Comparison

Table 1 presents a comparison of the retention ability of models presented in Section 5.1. Retention error 𝑒𝑟

is tested on the random datasets described in Section 5.2 and mean 𝑒𝑟 is given. Hyperparameters discovered
with the hyperparameter search detailed in Section 5.1.1 are also provided.

All models incorporating ILL show an exceptional ability to retain learned data, with most retention error
𝑒𝑟 < 0.01, while models without ILL show 𝑒𝑟 > 0.3. Excluding the ILL(Lasso) outlier, the best non-ILL
model has more than 4 times higher 𝑒𝑟 than the worst ILL model. On average, ILL improves the retention
ability of its underlying model by 50 times. ILL undoubtedly proves its ability to retain learned data. On
the topic of hyperparameters, we see a strong preference for low grid spacing 𝑔 and 𝑘-NN neighborhood
functions, with 5-NN most common.

A more extensive exploration of the effect of 𝑔 on 𝑒𝑟, given in Figure 8 and Tables 4 and 5 at the end
of this paper, shows that decreasing 𝑔 typically improves 𝑒𝑟. This is intuitive, because ILL more finely
partitions the input space of a given problem as 𝑔 decreases. An interesting exception is NF with 𝑔 = 0.033,
which features a large spike in 𝑒𝑟. Investigation reveals that the legacy learning rule employed by NF is
responsible for this anomaly, because it adjusts model outputs in the direction of the ILL gradient but does
not minimize change in model outputs. The NF learning rule can produce very large targets after many
iterations, resulting in very high retention error.

13



5.2.2 The Effect of Dimensionality Reduction on Retention

Tables 6-8, at the end of this paper, portray the effect of ILL dimensionality reduction on retention error 𝑒𝑟.
Random datasets are generated with the same procedure described in Section 5.2, varying only by number
of attributes 𝑑0. Models tested in Section 5.2.1 are compared, with varying reduced dimensionalities 𝑑𝑁 for
ILL models. Dimensionality is reduced with a random projection, as described in Section 3.4.

Even massive dimensionality reduction, up to a factor of 40, shows little effect on the retention ability
of ILL. ILL models achieve 𝑒𝑟 < 0.14 on all datasets and 𝑒𝑟 < 0.01 with most underlying models. Even the
NF model, which lacks an underlying model capable of independently retaining data, achieves low 𝑒𝑟.

We note an interesting observation: increasing 𝑑0 has minimal effect on 𝑒𝑟, and many models even achieve
lower 𝑒𝑟 with higher 𝑑0. With more dimensions, samples are less likely to have high similarity and are thus
easier to differentiate and retain. With this phenomena, ILL can retain learned data on problems of high
dimensionality, even with significant dimensionality reduction.

5.3 Incremental Classification and Regression
While retention ability is essential for incremental learning, most applications of supervised learning require
effective generalization. ILL is compared to a number of state-of-the-art learning models on a variety of
datasets, including classification, regression, and image datasets. However, each model is trained incremen-
tally, on 10 samples, before training on the next 10 samples. Models do not have access to the entire training
set during any one training step. We show that ILL effectively generalizes while learning incrementally.

5.3.1 Datasets

The popular iris dataset (Lichman, 2013) contains real value attributes describing various characteristics of
a flower: sepal width, septal length, petal width, and petal length. The goal is to classify a flower into three
types of iris. The iris dataset provides a light challenge with low dimensionality and low noise.

The Wisconsin breast cancer diagnostic dataset (Cancer) (Lichman, 2013) contains real valued attributes
of cell nuclei measured from images of fine needle aspirate from breast mass. The goal is to classify each
mass as malignant or benign. The cancer dataset provides a moderate classification challenge with medium
dimensionality.

California housing (CalHousing) (Pace, ; Pace and Barry, 1997; Huang et al., 2005; Huang et al., 2006)
is a regression dataset predicting house value based on neighborhood and house statistics. Attributes are
obtained using all block groups in California from the 1990 census. CalHousing provides a comparison of
incremental learning ability on regression datasets.

The US postal service hand-written digit dataset (USPS) (Hull, 1994) contains 16× 16 grey-scale images
of hand written digits, gathered at the Center of Excellence in Document Analysis and Recognition (CEDAR)
at SUNY Buffalo, as part of a project sponsored by the US postal service. Images are scanned from post
office mail and contain a multitude of writers and styles. USPS compares incremental learning ability on
medium dimensional image datasets with a low number of classes.

The CMU Pose, Illumination, and Expression (PIE) image classification dataset (Sim et al., 2002) contains
facial images of 68 people in 13 different poses, 43 different illumination conditions, and with 4 different
expressions. The PIE dataset benchmarked here is a subset of the original containing 67 people in the
frontal view pose, under 21 illumination conditions with background light off, and a neutral expression.
Images are made grey scale and scaled to 30 × 30 pixels. This dataset aims to predict the person. PIE is
our most challenging benchmark dataset, given its high dimensional problem space and many classes.

Table 2 presents the problem type of each dataset, number of samples in the dataset, number of samples
in the training set, attributes in each sample, and number of classes or regression values. For classification
datasets, the training set is given an even distribution of classes. Note that these datasets are used as
incremental learning datasets by training each model incrementally, with small batches. To emulate the
challenges of incremental learning, no measures are taken to balance class distribution between each training
batch, but the training set is shuffled to prevent artificial clumping of classes.

14



Table 2: Benchmark Datasets
Dataset Type Samples Training Samples Attributes Classes/Outputs
Iris Classification 150 90 4 3
Cancer Classification 569 280 30 2
CalHousing Regression 20640 500 8 1
USPS Image Classification 11000 500 256 10
PIE Image Classification 1407 670 900 67

5.3.2 Generalization Comparison

Table 3 compares the generalization ability of ILL and several comparison models detailed in Section 5.1.
Each model is tested on the datasets presented in Section 5.3.1. However, each model is trained incrementally,
in batches of 10 samples. Each batch of 10 samples is presented for training until the model converges
before presenting the next 10 samples. Models do not have access to the entire training set during any
one iteration. This forces models to learn incrementally, simultaneously testing incremental learning and
generalization ability. Accuracy on training (Tr) and testing (Te) sets is presented for classification datasets,
and mean squared error (MSE) is presented for regression datasets. Accuracy is defined as percent of
correct classifications. Training accuracy and MSE is measured over the entire training set using the final
incrementally trained model. Each model is trained and correspondingly tested 10 times on each dataset.
The mean and standard deviation (SD) of these runs is presented. Hyperparameters selected for each model,
via the hyperparameter search detailed in Section 5.1.1, are also included.

On every dataset, an ILL model achieves the highest testing accuracy or lowest testing MSE. With few
exceptions, ILL models improve the performance of their underlying model, regardless of dataset. Even
batch learning models, like RF and KNN, can achieve over 90% accuracy with ILL on some datasets. On
most datasets, ILL maintains consistent performance with low standard deviation.

We see that choice of underlying model is still essential to maximize accuracy. However, there is a
strong correlation between performance of an underlying model and performance with ILL. This greatly
eases model selection. If a model proves effective at a given problem, wrapping this model in ILL maintains
its effectiveness while improving incremental learning ability.

Among all datasets, we see a variety of ILL hyperparameters. For a given dataset, grid spacing 𝑔 is
relatively consistent among ILL models, indicating that dataset determines effective grid spacing more than
underlying model. While the radius neighborhood function sees occasional use, the KNN neighborhood is
more common, with 𝑘 = 5 the most frequent choice of 𝑘. We see little correlation between choice of reduced
neighborhood dimensionality 𝑑𝑁 and performance. This indicates that optimizing the 𝑑𝑁 hyperparameter
may be unnecessary.

6 Conclusion
In Section 5 we see the phenomenal incremental learning ability of ILL, its ability to improve generalization
accuracy of its underlying model, and that it provides extreme data retention ability. Incremental learning
with high data retention enables efficient retraining of models when new data is available. Real-time learning
becomes efficient because incremental learning models do not have to retrain on an entire, rapidly growing,
dataset. Likewise, real-time reinforcement learning with complex models becomes feasible.

Rather than provide a single incremental model and its related prior, ILL wraps an existing model, adding
the ability to retain previously learned data while maintaining the properties of its underlying model. With a
cartesian grid of points, ILL delegates learning to models corresponding to points near an input vector. This
local learning mechanism enables the effective incremental learning of an ILL ensemble. Efficient algorithms
for discovering points in the neighborhood around a given vector, combined with lazy evaluation, allow ILL
to maintain and manage an infinite cartesian grid of models with finite computation and memory. This
methodology allows ILL to satisfy our criteria for an incremental learning model, given in Section 1, and
re-iterated here:

1. It must learn from presented data.

15



Table 3: Model Generalization Comparison
Dataset Model Tr Mean Tr SD Te Mean Te SD Hyperparameters

Iris

ILL(MLP) 96.67% 0.00% 93.33% 0.00% 𝑔: 1.000, 𝑓𝑁 : 5-NN, 𝑛ℎ: 4
ILL(RBF) 96.67% 0.00% 93.33% 0.00% 𝑔: 1.000, 𝑓𝑁 : 5-NN, 𝑛: 32, 𝑣: 0.125
ILL(Lasso) 96.67% 0.00% 96.67% 0.00% 𝑔: 0.681, 𝑓𝑁 : 5-NN
ILL(SVM) 95.56% 0.00% 91.67% 0.00% 𝑔: 1.000, 𝑓𝑁 : 3-NN
ILL(RF) 95.56% 0.00% 96.67% 0.00% 𝑔: 0.681, 𝑓𝑁 : 5-NN, 𝑡: 1
ILL(KNN) 95.56% 0.00% 91.67% 0.00% 𝑔: 1.000, 𝑓𝑁 : Radius, 𝑘: 1
NF 95.56% 0.00% 96.67% 0.00% 𝑔: 0.681, 𝑓𝑁 : 3-NN
MLP 95.56% 0.00% 93.50% 0.90% 𝑛ℎ: 4
RBF 91.89% 4.04% 90.50% 4.48% 𝑛: 32, 𝑣: 0.125
Lasso 65.56% 0.00% 66.67% 0.00%
SVM 66.56% 0.33% 66.67% 0.00%
RF 66.67% 0.00% 66.67% 0.00% 𝑡: 1
KNN 66.67% 0.00% 66.67% 0.00% 𝑘: 1

Cancer

ILL(MLP) 87.71% 3.16% 81.94% 4.73% 𝑔: 0.042, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑛ℎ: 3
ILL(RBF) 81.25% 14.75% 72.15% 21.29% 𝑔: 0.042, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑛: 29, 𝑣: 0.138
ILL(Lasso) 81.75% 5.00% 70.83% 7.05% 𝑔: 0.042, 𝑑𝑁 : 1, 𝑓𝑁 : 1-NN
ILL(SVM) 78.82% 8.35% 66.37% 10.77% 𝑔: 0.042, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN
ILL(RF) 59.96% 9.19% 39.07% 13.45% 𝑔: 0.042, 𝑑𝑁 : 2, 𝑓𝑁 : 3-NN, 𝑡: 1
ILL(KNN) 60.14% 6.80% 42.01% 9.27% 𝑔: 0.042, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑘: 1
NF 54.07% 8.08% 31.52% 12.17% 𝑔: 0.294, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
MLP 81.29% 1.75% 72.18% 2.60% 𝑛ℎ: 3
RBF 85.29% 5.60% 77.75% 9.09% 𝑛: 29, 𝑣: 0.138
Lasso 65.00% 0.00% 48.79% 0.00%
SVM 53.89% 0.25% 32.15% 0.48%
RF 50.00% 0.00% 24.91% 0.00% 𝑡: 1
KNN 50.00% 0.00% 24.91% 0.00% 𝑘: 1

CalHousing

ILL(MLP) 0.161 0.030 0.180 0.032 𝑔: 1.000, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑛ℎ: 6
ILL(RBF) 0.188 0.050 0.209 0.054 𝑔: 0.180, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑛: 95, 𝑣: 0.042
ILL(Lasso) 0.113 0.016 0.117 0.015 𝑔: 0.455, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
ILL(SVM) 0.135 0.029 0.146 0.030 𝑔: 1.000, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN
ILL(RF) 0.186 0.053 0.194 0.050 𝑔: 0.455, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑡: 29
ILL(KNN) 0.214 0.049 0.207 0.044 𝑔: 1.000, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑘: 4
NF 1.573 3.526 1.561 3.503 𝑔: 0.455, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
MLP 0.119 0.003 0.136 0.003 𝑛ℎ: 6
RBF 0.235 0.036 0.253 0.036 𝑛: 95, 𝑣: 0.042
Lasso 0.111 0.000 0.118 0.000
SVM 0.123 0.002 0.132 0.002
RF 0.172 0.000 0.188 0.000 𝑡: 29
KNN 0.280 0.000 0.263 0.000 𝑘: 4

USPS

ILL(MLP) 84.00% 2.19% 74.46% 1.95% 𝑔: 0.180, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑛ℎ: 14
ILL(RBF) 24.10% 4.91% 20.83% 4.56% 𝑔: 0.180, 𝑑𝑁 : 2, 𝑓𝑁 : 3-NN, 𝑛: 66, 𝑣: 80
ILL(Lasso) 93.74% 0.71% 80.63% 0.81% 𝑔: 0.180, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
ILL(SVM) 69.30% 2.89% 57.40% 2.22% 𝑔: 0.455, 𝑑𝑁 : 1, 𝑓𝑁 : Radius
ILL(RF) 17.58% 1.92% 16.57% 2.17% 𝑔: 0.294, 𝑑𝑁 : 2, 𝑓𝑁 : 3-NN, 𝑡: 23
ILL(KNN) 23.56% 0.98% 24.36% 1.03% 𝑔: 0.294, 𝑑𝑁 : 2, 𝑓𝑁 : Radius, 𝑘: 1
NF 24.52% 3.68% 15.44% 2.25% 𝑔: 0.042, 𝑑𝑁 : 2, 𝑓𝑁 : 1-NN
MLP 78.38% 3.41% 69.59% 3.36% 𝑛ℎ: 14
RBF 35.02% 3.76% 30.64% 3.72% 𝑛: 66, 𝑣: 80
Lasso 83.96% 0.85% 72.46% 0.26%
SVM 66.08% 2.26% 56.69% 1.86%
RF 15.60% 0.00% 14.09% 0.00% 𝑡: 23
KNN 23.00% 0.00% 24.51% 0.00% 𝑘: 1

PIE

ILL(MLP) 12.06% 1.79% 7.72% 1.10% 𝑔: 0.042, 𝑑𝑁 : 2, 𝑓𝑁 : Radius, 𝑛ℎ: 22
ILL(RBF) 6.16% 0.60% 4.12% 1.00% 𝑔: 0.042, 𝑑𝑁 : 2, 𝑓𝑁 : 1-NN, 𝑛: 112, 𝑣: 240
ILL(Lasso) 78.15% 2.11% 75.59% 2.10% 𝑔: 0.455, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
ILL(SVM) 84.15% 2.34% 81.59% 2.42% 𝑔: 0.099, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN
ILL(RF) 96.88% 0.98% 4.74% 0.77% 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑡: 15
ILL(KNN) 7.60% 0.66% 6.34% 1.12% 𝑔: 0.042, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑘: 1
NF 96.70% 0.86% 4.79% 0.75% 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
MLP 6.39% 1.87% 5.43% 1.68% 𝑛ℎ: 22
RBF 1.75% 0.31% 1.29% 0.26% 𝑛: 112, 𝑣: 240
Lasso 79.18% 2.32% 77.57% 2.06%
SVM 72.61% 4.85% 69.89% 4.10%
RF 4.93% 0.00% 3.26% 0.00% 𝑡: 15
KNN 5.82% 0.00% 5.56% 0.00% 𝑘: 1

16



2. It must retain data without requiring access to previous data.

3. Its memory usage must be finite and bounded regardless of how many or how often samples are
presented.

As an ensemble, the performance of ILL is a function of its underlying model and the number of underlying
models activated. Despite maintaining a theoretically infinite grid of models, the neighborhood mechanism
described in Section 3.1 allows for easy performance improvements when necessary, by shrinking the ILL
neighborhood for faster activation and training with fewer underlying models per activation. Furthermore,
by combining multiple underlying models, ILL can achieve high predictive power with simpler underlying
models.

This unique ensemble furthers the state-of-the-art in incremental learning, provides robust tuning to solve
an array of problems, and integrates seamlessly with existing state-of-the-art incremental and batch models
for supervised learning. The customization of ILL provides numerous avenues for extension: neighborhood
function (Section 3.1), similarity function (Section 3.2), and underlying model can be interchanged and
extended, allowing for extensive improvements and exploration in future works. ILL does not supercede or
replace the state-of-the-art but instead extends and improves it. Future advances in machine learning can
seamlessly integrate with ILL to add or improve incremental learning ability.

6.1 Future Works
A great advantage that ILL has over many existing incremental learning methods is its constant memory
scaling with regard to number of training instances. This provides ILL with the ability to learn on datasets
containing more than millions of samples. However, experimental results with massive datasets is beyond
the scope of this paper, due to the computational requirements of our hyperparameter optimization strategy.
Instead, our experimental analysis emulates the difficulties of big data by partitioning datasets into many
small subsets, providing evidence that ILL can learn efficiently with massive datasets. Future exploration of
ILL can examine performance with big datasets containing millions of samples and potentially further the
state-of-the-art in big data, image recognition, social media analysis, personalized medicine, and marketing.

17



Table 4: The Effect of Grid Spacing on Retention, Part 1
Model Mean 𝑒𝑟 Hyperparameters
ILL(MLP) 0.3837 𝑔: 0.500, 𝑓𝑁 : 1-NN, 𝑛ℎ: 46
ILL(MLP) 0.3804 𝑔: 0.399, 𝑓𝑁 : 1-NN, 𝑛ℎ: 46
ILL(MLP) 0.2982 𝑔: 0.310, 𝑓𝑁 : 1-NN, 𝑛ℎ: 46
ILL(MLP) 0.2606 𝑔: 0.232, 𝑓𝑁 : 1-NN, 𝑛ℎ: 46
ILL(MLP) 0.1952 𝑔: 0.166, 𝑓𝑁 : 1-NN, 𝑛ℎ: 46
ILL(MLP) 0.1376 𝑔: 0.110, 𝑓𝑁 : 1-NN, 𝑛ℎ: 46
ILL(MLP) 0.0963 𝑔: 0.066, 𝑓𝑁 : Radius, 𝑛ℎ: 46
ILL(MLP) 0.0630 𝑔: 0.033, 𝑓𝑁 : 3-NN, 𝑛ℎ: 46
ILL(MLP) 0.0212 𝑔: 0.011, 𝑓𝑁 : 3-NN, 𝑛ℎ: 46
ILL(MLP) 0.0036 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑛ℎ: 46
ILL(RBF) 0.3489 𝑔: 0.500, 𝑓𝑁 : 1-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.3751 𝑔: 0.399, 𝑓𝑁 : Radius, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.2552 𝑔: 0.310, 𝑓𝑁 : 1-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.2217 𝑔: 0.232, 𝑓𝑁 : 1-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.1771 𝑔: 0.166, 𝑓𝑁 : 1-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.1251 𝑔: 0.110, 𝑓𝑁 : 1-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.0832 𝑔: 0.066, 𝑓𝑁 : 1-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.0514 𝑔: 0.033, 𝑓𝑁 : 3-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.0238 𝑔: 0.011, 𝑓𝑁 : 3-NN, 𝑛: 118, 𝑣: 0.034
ILL(RBF) 0.0069 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑛: 118, 𝑣: 0.034
ILL(Lasso) 0.2676 𝑔: 0.500, 𝑓𝑁 : 3-NN
ILL(Lasso) 0.2673 𝑔: 0.399, 𝑓𝑁 : 3-NN
ILL(Lasso) 0.2527 𝑔: 0.310, 𝑓𝑁 : 3-NN
ILL(Lasso) 0.2469 𝑔: 0.232, 𝑓𝑁 : 3-NN
ILL(Lasso) 0.2380 𝑔: 0.166, 𝑓𝑁 : 3-NN
ILL(Lasso) 0.2260 𝑔: 0.110, 𝑓𝑁 : 3-NN
ILL(Lasso) 0.2205 𝑔: 0.066, 𝑓𝑁 : 3-NN
ILL(Lasso) 0.2105 𝑔: 0.033, 𝑓𝑁 : 5-NN
ILL(Lasso) 0.2037 𝑔: 0.011, 𝑓𝑁 : 5-NN
ILL(Lasso) 0.2004 𝑔: 0.001, 𝑓𝑁 : 5-NN
ILL(SVM) 0.2507 𝑔: 0.500, 𝑓𝑁 : 3-NN
ILL(SVM) 0.2397 𝑔: 0.399, 𝑓𝑁 : 3-NN
ILL(SVM) 0.2063 𝑔: 0.310, 𝑓𝑁 : 3-NN
ILL(SVM) 0.1870 𝑔: 0.232, 𝑓𝑁 : 3-NN
ILL(SVM) 0.1555 𝑔: 0.166, 𝑓𝑁 : 3-NN
ILL(SVM) 0.1296 𝑔: 0.110, 𝑓𝑁 : 3-NN
ILL(SVM) 0.1069 𝑔: 0.066, 𝑓𝑁 : 3-NN
ILL(SVM) 0.0927 𝑔: 0.033, 𝑓𝑁 : 3-NN
ILL(SVM) 0.0781 𝑔: 0.011, 𝑓𝑁 : 3-NN
ILL(SVM) 0.0684 𝑔: 0.001, 𝑓𝑁 : 5-NN
ILL(RF) 0.3718 𝑔: 0.500, 𝑓𝑁 : 1-NN, 𝑡: 28
ILL(RF) 0.4078 𝑔: 0.399, 𝑓𝑁 : Radius, 𝑡: 28
ILL(RF) 0.2820 𝑔: 0.310, 𝑓𝑁 : 1-NN, 𝑡: 28
ILL(RF) 0.2387 𝑔: 0.232, 𝑓𝑁 : 1-NN, 𝑡: 28
ILL(RF) 0.1757 𝑔: 0.166, 𝑓𝑁 : 1-NN, 𝑡: 28
ILL(RF) 0.1219 𝑔: 0.110, 𝑓𝑁 : 1-NN, 𝑡: 28
ILL(RF) 0.0911 𝑔: 0.066, 𝑓𝑁 : 3-NN, 𝑡: 28
ILL(RF) 0.0513 𝑔: 0.033, 𝑓𝑁 : 3-NN, 𝑡: 28
ILL(RF) 0.0234 𝑔: 0.011, 𝑓𝑁 : 3-NN, 𝑡: 28
ILL(RF) 0.0078 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑡: 28

18



Table 5: The Effect of Grid Spacing on Retention, Part 2
Model Mean 𝑒𝑟 Hyperparameters
ILL(KNN) 0.3845 𝑔: 0.500, 𝑓𝑁 : 1-NN, 𝑘: 5
ILL(KNN) 0.3874 𝑔: 0.399, 𝑓𝑁 : 1-NN, 𝑘: 5
ILL(KNN) 0.2985 𝑔: 0.310, 𝑓𝑁 : 1-NN, 𝑘: 5
ILL(KNN) 0.2508 𝑔: 0.232, 𝑓𝑁 : 1-NN, 𝑘: 5
ILL(KNN) 0.1878 𝑔: 0.166, 𝑓𝑁 : 1-NN, 𝑘: 5
ILL(KNN) 0.1297 𝑔: 0.110, 𝑓𝑁 : 1-NN, 𝑘: 5
ILL(KNN) 0.0927 𝑔: 0.066, 𝑓𝑁 : Radius, 𝑘: 5
ILL(KNN) 0.0516 𝑔: 0.033, 𝑓𝑁 : 3-NN, 𝑘: 5
ILL(KNN) 0.0243 𝑔: 0.011, 𝑓𝑁 : 3-NN, 𝑘: 5
ILL(KNN) 0.0078 𝑔: 0.001, 𝑓𝑁 : 5-NN, 𝑘: 5
NF 0.5063 𝑔: 0.500, 𝑓𝑁 : 1-NN
NF 0.5120 𝑔: 0.399, 𝑓𝑁 : 1-NN
NF 0.4152 𝑔: 0.310, 𝑓𝑁 : 1-NN
NF 0.3499 𝑔: 0.232, 𝑓𝑁 : 1-NN
NF 0.2649 𝑔: 0.166, 𝑓𝑁 : Radius
NF 0.1806 𝑔: 0.110, 𝑓𝑁 : 1-NN
NF 0.1121 𝑔: 0.066, 𝑓𝑁 : 1-NN
NF 0.3990 𝑔: 0.033, 𝑓𝑁 : 3-NN
NF 0.0200 𝑔: 0.011, 𝑓𝑁 : Radius
NF 0.0001 𝑔: 0.001, 𝑓𝑁 : 1-NN

Table 6: The Effect of Dimensionality Reduction on Retention, Part 1
𝑑0 Model 𝑑𝑁 Mean 𝑒𝑟 Hyperparameters

40

ILL(MLP)
4 0.00626 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑛ℎ: 20
2 0.00462 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑛ℎ: 20
1 0.00702 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑛ℎ: 20

ILL(RBF)
4 0.01054 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑛: 107, 𝑣: 0.037
2 0.00888 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑛: 107, 𝑣: 0.037
1 0.00736 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑛: 107, 𝑣: 0.037

ILL(Lasso)
4 0.03730 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN
2 0.03682 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
1 0.03659 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN

ILL(SVM)
4 0.03112 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN
2 0.02959 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
1 0.02365 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN

ILL(RF)
4 0.01063 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑡: 23
2 0.00824 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑡: 23
1 0.01311 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑡: 23

ILL(KNN)
4 0.01162 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑘: 5
2 0.00841 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑘: 5
1 0.01766 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑘: 5

NF
4 0.00000 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 1-NN
2 0.00000 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 1-NN
1 0.00890 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 1-NN

MLP N/A 0.16619 𝑛ℎ: 20
RBF N/A 0.15911 𝑛: 107, 𝑣: 0.037
Lasso N/A 0.07786
SVM N/A 0.07184
RF N/A 0.38676 𝑡: 23
KNN N/A 0.36903 𝑘: 5

19



Table 7: The Effect of Dimensionality Reduction on Retention, Part 2
𝑑0 Model 𝑑𝑁 Mean 𝑒𝑟 Hyperparameters

20

ILL(MLP)
4 0.00624 𝑔: 0.042, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑛ℎ: 10
2 0.00479 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑛ℎ: 10
1 0.00721 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑛ℎ: 10

ILL(RBF)
4 0.01256 𝑔: 0.099, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑛: 122, 𝑣: 0.033
2 0.00838 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑛: 122, 𝑣: 0.033
1 0.00685 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑛: 122, 𝑣: 0.033

ILL(Lasso)
4 0.04291 𝑔: 0.042, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN
2 0.04075 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
1 0.03849 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN

ILL(SVM)
4 0.03794 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN
2 0.03605 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
1 0.03199 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN

ILL(RF)
4 0.01144 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑡: 10
2 0.01022 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 3-NN, 𝑡: 10
1 0.02302 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑡: 10

ILL(KNN)
4 0.01047 𝑔: 0.042, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑘: 5
2 0.00938 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑘: 5
1 0.01406 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑘: 5

NF
4 0.00000 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 1-NN
2 0.00000 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 1-NN
1 0.00755 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 1-NN

MLP N/A 0.22435 𝑛ℎ: 10
RBF N/A 0.12337 𝑛: 122, 𝑣: 0.033
Lasso N/A 0.10928
SVM N/A 0.11395
RF N/A 0.43069 𝑡: 10
KNN N/A 0.41234 𝑘: 5

20



Table 8: The Effect of Dimensionality Reduction on Retention, Part 3
𝑑0 Model 𝑑𝑁 Mean 𝑒𝑟 Hyperparameters

5

ILL(MLP)
4 0.00689 𝑔: 0.042, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑛ℎ: 58
2 0.00584 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑛ℎ: 58
1 0.00726 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 3-NN, 𝑛ℎ: 58

ILL(RBF)
4 0.01039 𝑔: 0.042, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑛: 111, 𝑣: 0.036
2 0.00838 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑛: 111, 𝑣: 0.036
1 0.00625 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑛: 111, 𝑣: 0.036

ILL(Lasso)
4 0.13247 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN
2 0.13121 𝑔: 0.042, 𝑑𝑁 : 2, 𝑓𝑁 : 3-NN
1 0.11402 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN

ILL(SVM)
4 0.04400 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN
2 0.04502 𝑔: 0.042, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN
1 0.03851 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN

ILL(RF)
4 0.01097 𝑔: 0.042, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑡: 27
2 0.00900 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 5-NN, 𝑡: 27
1 0.00902 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑡: 27

ILL(KNN)
4 0.01140 𝑔: 0.042, 𝑑𝑁 : 4, 𝑓𝑁 : 5-NN, 𝑘: 5
2 0.01058 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 3-NN, 𝑘: 5
1 0.00820 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 5-NN, 𝑘: 5

NF
4 0.00000 𝑔: 0.001, 𝑑𝑁 : 4, 𝑓𝑁 : 1-NN
2 0.00000 𝑔: 0.001, 𝑑𝑁 : 2, 𝑓𝑁 : 1-NN
1 0.00567 𝑔: 0.001, 𝑑𝑁 : 1, 𝑓𝑁 : 1-NN

MLP N/A 0.42845 𝑛ℎ: 58
RBF N/A 0.12565 𝑛: 111, 𝑣: 0.036
Lasso N/A 0.21315
SVM N/A 0.21540
RF N/A 0.42173 𝑡: 27
KNN N/A 0.39593 𝑘: 5

21



A Radius Points Algorithm With Floating Point Math
When Algorithm 1 is implemented with floating point math (Whitehead and Fit-Florea, 2011), as is common
in computer systems, numerical precision errors can result in points with insignificant differences, when points
would be identical with infinite precision. For example, given grid spacing 𝑔 = 0.1, radius 𝑟1 = 0.1, and
center �⃗� = [0.61], using double-precision 64-bit format IEEE 754 math, Algorithm 1 will return points
[𝑔⌈(�⃗�1 − 𝑟1)/𝑔⌉ = 0.6000000000000001] and [𝑔⌈(�⃗�1 − 𝑟1)/𝑔⌉ + 𝑔 = 0.7000000000000001]. If we expand the
radius to 𝑟2 = 0.11, Algorithm 1 will return points [𝑔⌈(�⃗�1 − 𝑟2)/𝑔⌉ = 0.5], [𝑔⌈(�⃗�1 − 𝑟2)/𝑔⌉ + 𝑔 = 0.6], and
[𝑔⌈(�⃗�1 − 𝑟2)/𝑔⌉ + 𝑔 + 𝑔 = 0.7]. Although the larger radius 𝑟2 should encompass at least the same points
as the smaller radius 𝑟1, limited precision in double-precision 64-bit format IEEE 754 results in completely
different points for 𝑟1 and 𝑟2. Note that the radius parameter varies regularly during recursion of the radius
points procedure and with various neighborhood functions utilizing Algorithm 1. Rounding each component
to the number of significant digits in 𝑔 avoids precision errors.

22



Compliance with ethical standards
Author Justin Lovinger declares that he has no conflict of interest. Author Iren Valova declares that she has no conflict of
interest. Ethical approval: This article does not contain any studies with human participants or animals performed by any of
the authors.

References
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The

American Statistician, 46(3):175–185.

Balsubramani, A., Dasgupta, S., and Freund, Y. (2013). The fast convergence of incremental pca. In
Advances in Neural Information Processing Systems, pages 3174–3182.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828.

Bingham, E. and Mannila, H. (2001). Random projection in dimensionality reduction: applications to image
and text data. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 245–250. ACM.

Broomhead, D. S. and Lowe, D. (1988). Radial basis functions, multi-variable functional interpolation and
adaptive networks. Technical report, DTIC Document.

Cederborg, T., Li, M., Baranes, A., and Oudeyer, P.-Y. (2010). Incremental local online gaussian mixture
regression for imitation learning of multiple tasks. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 267–274. IEEE.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu, M. (2015). Dimensionality reduction for k-means
clustering and low rank approximation. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 163–172. ACM.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297.

Cyc (2008). Graphic showing the maximum separating hyperplane and the margin. https://commons.
wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png.

Díaz-Uriarte, R. and De Andres, S. A. (2006). Gene selection and classification of microarray data using
random forest. BMC bioinformatics, 7(1):1.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics,
7(2):179–188.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576.

Gepperth, A. and Hammer, B. (2016). Incremental learning algorithms and applications. In European
Symposium on Artificial Neural Networks (ESANN).

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In International
Conference on Artificial Intelligence and Statistics, pages 315–323.

Hagan, M. T., Demuth, H. B., Beale, M. H., et al. (1996). Neural network design. Pws Pub. Boston.

Hausknecht, M. and Stone, P. (2015). Deep recurrent q-learning for partially observable mdps. CoRR,
abs/1507.06527.

Hazan, E. et al. (2016). Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325.

23

https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
https://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png


Ho, T. K. (1995). Random decision forests. In Document Analysis and Recognition, 1995., Proceedings of
the Third International Conference on, volume 1, pages 278–282. IEEE.

Huang, G.-B., Chen, L., Siew, C. K., et al. (2006). Universal approximation using incremental constructive
feedforward networks with random hidden nodes. IEEE Trans. Neural Networks, 17(4):879–892.

Huang, G.-B., Saratchandran, P., and Sundararajan, N. (2005). A generalized growing and pruning rbf (ggap-
rbf) neural network for function approximation. IEEE Transactions on Neural Networks, 16(1):57–67.

Huang, G.-B., Zhou, H., Ding, X., and Zhang, R. (2012). Extreme learning machine for regression and
multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
42(2):513–529.

Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Transactions on pattern
analysis and machine intelligence, 16(5):550–554.

Jiang, F., Sui, Y., and Cao, C. (2013). An incremental decision tree algorithm based on rough sets and its
application in intrusion detection. Artificial Intelligence Review, pages 1–14.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of lipschitz mappings into a hilbert space. Con-
temporary mathematics, 26(189-206):1.

Kalteh, A. M., Hjorth, P., and Berndtsson, R. (2008). Review of the self-organizing map (som) approach in
water resources: Analysis, modelling and application. Environmental Modelling & Software, 23(7):835–
845.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological cybernetics,
43(1):59–69.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480.

Lange, S. and Riedmiller, M. (2010). Deep auto-encoder neural networks in reinforcement learning. In The
2010 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml.

Lovinger, J. and Valova, I. (2016). Neural field: Supervised apportioned incremental learning (sail). In 2016
International Joint Conference on Neural Networks (IJCNN), pages 2500–2506.

Lowe, D. and Broomhead, D. (1988). Multivariable functional interpolation and adaptive networks. Complex
syst, 2:321–355.

Ma, K. and Ben-Arie, J. (2014). Compound exemplar based object detection by incremental random forest.
In Pattern Recognition (ICPR), 2014 22nd International Conference on, pages 2407–2412. IEEE.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic
models. In Proc. ICML, volume 30, page 1.

Milborrow, S. (2011). Titanic decision tree. https://commons.wikimedia.org/wiki/File:CART_tree_
titanic_survivors.png.

Montgomery, D. C., Peck, E. A., and Vining, G. G. (2015). Introduction to linear regression analysis. John
Wiley & Sons.

Muja, M. and Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied linear statistical models,
volume 4. Irwin Chicago.

Nocedal, J. and Wright, S. J. (2006). Numerical optimization 2nd.

24

http://archive.ics.uci.edu/ml
https://commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png
https://commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png


Pace, R. K. California housing. http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html.

Pace, R. K. and Barry, R. (1997). Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):291–
297.

Pang, S., Ozawa, S., and Kasabov, N. (2005). Incremental linear discriminant analysis for classification of
data streams. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(5):905–
914.

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830.

Polikar, R., Upda, L., Upda, S. S., and Honavar, V. (2001). Learn++: An incremental learning algorithm for
supervised neural networks. IEEE transactions on systems, man, and cybernetics, part C (applications
and reviews), 31(4):497–508.

Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine
and neuro-fuzzy models in landslide susceptibility mapping using gis. Computers & Geosciences, 51:350–
365.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

Ramos, F. and Ott, L. (2016). Hilbert maps: scalable continuous occupancy mapping with stochastic gradient
descent. The International Journal of Robotics Research, 35(14):1717–1730.

Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). Quantum support vector machine for big data classifica-
tion. Physical review letters, 113(13):130503.

Riedmiller, M. (2005). Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European Conference on Machine Learning, pages 317–328. Springer.

Ristin, M., Guillaumin, M., Gall, J., and Van Gool, L. (2016). Incremental learning of random forests
for large-scale image classification. IEEE transactions on pattern analysis and machine intelligence,
38(3):490–503.

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P. (2012). An
assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal
of Photogrammetry and Remote Sensing, 67:93–104.

Rosasco, L. and Villa, S. (2015). Learning with incremental iterative regularization. In Advances in Neural
Information Processing Systems, pages 1630–1638.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

Rutkowski, L., Jaworski, M., Pietruczuk, L., and Duda, P. (2014). The cart decision tree for mining data
streams. Information Sciences, 266:1–15.

Schmid, H. (2013). Probabilistic part-ofispeech tagging using decision trees. In New methods in language
processing, page 154. Routledge.

Seber, G. A. and Lee, A. J. (2012). Linear regression analysis, volume 936. John Wiley & Sons.

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing
and Communications Review, 5(1):3–55.

25

http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html


Shi, X., Yang, Y., Guo, Z., and Lai, Z. (2014). Face recognition by sparse discriminant analysis via joint l
2, 1-norm minimization. Pattern Recognition, 47(7):2447–2453.

Sim, T., Baker, S., and Bsat, M. (2002). The cmu pose, illumination, and expression (pie) database. In
Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on,
pages 53–58. IEEE.

Song, W., Zhu, J., Li, Y., and Chen, C. (2016). Image alignment by online robust pca via stochastic gradient
descent. IEEE Transactions on Circuits and Systems for video Technology, 26(7):1241–1250.

Soudry, D., Di Castro, D., Gal, A., Kolodny, A., and Kvatinsky, S. (2015). Memristor-based multilayer
neural networks with online gradient descent training. IEEE transactions on neural networks and
learning systems, 26(10):2408–2421.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1. MIT press
Cambridge.

Suykens, J. A. and Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing
letters, 9(3):293–300.

Tagliaferri, R., Longo, G., Milano, L., Acernese, F., Barone, F., Ciaramella, A., De Rosa, R., Donalek, C.,
Eleuteri, A., Raiconi, G., et al. (2003). Neural networks in astronomy. Neural Networks, 16(3):297–319.

Tan, Y., Wang, J., and Zurada, J. M. (2001). Nonlinear blind source separation using a radial basis function
network. Neural Networks, IEEE Transactions on, 12(1):124–134.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288.

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73(3):273–282.

Tóth, L. (2013). Phone recognition with deep sparse rectifier neural networks. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 6985–6989. IEEE.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine learning, 4(2):161–186.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-learning. In
AAAI, pages 2094–2100.

Variddhisaï, T. and Mandic, D. (2017). Online multilinear dictionary learning for sequential compressive
sensing. arXiv preprint arXiv:1703.02492.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, University of Cambridge England.

Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2006). Distance metric learning for large margin nearest
neighbor classification. In Advances in neural information processing systems, pages 1473–1480.

Weng, J., Zhang, Y., and Hwang, W.-S. (2003). Candid covariance-free incremental principal component
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8):1034–1040.

Whitehead, N. and Fit-Florea, A. (2011). Precision & performance: Floating point and ieee 754 compliance
for nvidia gpus. rn (A+ B), 21(1):18749–19424.

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust face recognition via sparse
representation. IEEE transactions on pattern analysis and machine intelligence, 31(2):210–227.

26



Yoshida, Y., Karakida, R., Okada, M., and Amari, S.-i. (2017). Statistical mechanical analysis of online
learning with weight normalization in single layer perceptron. Journal of the Physical Society of Japan,
86(4):044002.

Zhao, H. and Yuen, P. C. (2008). Incremental linear discriminant analysis for face recognition. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(1):210–221.

Zhao, H., Yuen, P. C., and Kwok, J. T. (2006). A novel incremental principal component analysis and
its application for face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 36(4):873–886.

27


	Introduction
	Incremental Learning
	The Infinite Lattice Learner Algorithm
	Neighborhood
	Radius
	K-Nearest Neighbors

	Similarity
	Output and Learning
	High Dimensional Data

	Neural Field: A Special Case of ILL
	Benchmark and Comparative Analysis
	Models
	Selecting Hyperparameters

	Retention of Previously Learned Data
	Retention Comparison
	The Effect of Dimensionality Reduction on Retention

	Incremental Classification and Regression
	Datasets
	Generalization Comparison


	Conclusion
	Future Works

	Radius Points Algorithm With Floating Point Math

