
 Procedia Computer Science 36 (2014) 523 – 528

Available online at www.sciencedirect.com

1877-0509 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology
doi: 10.1016/j.procs.2014.09.033

ScienceDirect

Complex Adaptive Systems, Publication 4
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2014-Philadelphia, PA

Harnessing Mother Nature: Optimizing Genetic Algorithms for
Adaptive Systems

Justin Lovingera, Iren Valovaa*, MacKenzie Rogersa, Ryan Nadeaua,
Natacha Gueorguievab

aComputer and Information Science Department, University of Massachusetts Dartmouth, MA 02747, USA
bComputer Science Department, City University of New York, NY 10314, USA

Abstract

Many adaptive systems require optimization in real time. Whether it is a robot that must maintain its gait regardless of the terrain
or multicore systems needing proper scheduling, optimization is of utmost importance. With hundreds of processes created and
evaluated every second, real-time performance optimization is a monumental task. Mother nature has proven that evolution is
very effective form of adaptation. Through a stochastic search, i.e. GA, computers harness this power. GAs have been developed
to utilize many different parameters, which have a significant effect on the efficiency and effectiveness of a GA. If a GA tasked
to optimize these parameters, the result is a rapid and automatic optimization. To test our hypothesis we optimize a GA that
solves common optimization functions. The GA's effectiveness is determined by the time it takes to find the solution. Cross
validation is utilized, and shows an average 947% performance improvement on training sets and 440% on testing sets. This large
improvement in the testing sets shows that an optimized genetic algorithm remains general enough to effectively solve similar
problems.
© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of scientific committee of Missouri University of Science and Technology.

Keywords: genetic algorithms; optimization; embedded systems performance

* Corresponding author. Tel.: 5089998502; fax: 5089999144.
E-mail address: ivalova@umassd.edu

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.09.033&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.09.033&domain=pdf

524 Justin Lovinger et al. / Procedia Computer Science 36 (2014) 523 – 528

1. Introduction

Genetic algorithms (GA) have become an integral part of numerous adaptive systems. Although, at their core,
GA are simply a form of search, their effectiveness and generalizability have made them very popular. Despite their
popularity, GA can be very finicky. Although effective and powerful when parameters are set correctly, a genetic
algorithm with improper parameters can be anywhere from very slow to completely ineffective. Of course, human
beings are more than able to adjust these parameters manually, but why should we have to? We are talking about as
many as half a dozen parameters that all interact with each other in complex ways. Because of these complexities,
the process of manually tweaking, testing, and adjusting again can take several hours for a person to complete.
Instead, we let the computer perfect these parameters on its own.

We have organized this paper in six sections, presenting our method for automatic optimization of the parameters
of a genetic algorithm in section 3; the testing of this method with a GA for function minimization, and proving the
effectiveness and generalizability of the method in section 5; and finally, we provide an example of the effects of our
method on a real world problem in section 3.

2. State-of-the-art and applications

Since GA are a popular search method in many fields, their optimization has been investigated in several papers.
The most common method of optimizing genetic algorithms is the systematic testing of various parameter
combinations. This is the method human beings utilize when manually adjusting genetic algorithms. However, it is
not uncommon to automate this process1,2. Then, a number of parameter sets are created, either by hand or
automatically and are tested sequentially, where an evaluation function determines the effectiveness of each set of
parameters. The best parameter set is then chosen.

The optimization of one genetic algorithm with another genetic algorithm has also been investigated on occasion.
The authors in [2] investigate a genetic algorithm optimization system similar to ours, with a focus on road traffic
optimization. Although their system encodes similar parameters, their method of optimization differs greatly, as it is
optimizing the final fitness of the genetic algorithm, not the efficiency and time of the genetic algorithm.

Testing the performance of a genetic algorithm with minimization problems is common practice. In [3]
minimization problems are utilized to test the effectiveness of various genetic operators.

Just about any adaptive system benefits from an increase in efficiency and performance. However, for some
adaptive systems optimization is essential, e.g. systems running on embedded hardware. These are applications
where computing power is limited and battery life is a concern. An interesting example of adaptation in embedded
hardware is auto adaptive movement for robotics4,5,6. This places a robot in a continual state of evolution. Rather
than being designed to function well in a specific environment, and with hardware in perfect condition, a robot with
auto adaptive movement evolves to its environment and internal state. Even if its environment catches on fire or it
loses a leg, this type of robot finds a way to keep going. Since such a robot is chasing an ever-changing optimal
movement pattern, it has greater processing and battery requirements than the average robot. Increased efficiency
allows this type of robot to function longer and stay ahead of the curve by adapting more rapidly.

Another performance critical adaptive system is process scheduling for computing clusters7 and multicore
machines1. These systems must evaluate hundreds of processes and threads in milliseconds, and every time a new
process or thread is created, the schedule must be reevaluated. With processes being created every second, this
becomes a monumental task. Every increase in efficiency of the process scheduling system leads to increased
performance for the computer or computer cluster.

3. Proposed technique

Our technique, at its core, utilizes one genetic algorithm (GA) to optimize another GA. Given a problem that is
solved with a GA, in our system, this GA is referred to as the inner genetic algorithm (IGA), and it is the one being
optimized. The GA performing the optimization is referred to as the outer genetic algorithm (OGA). The OGA
optimizes the parameters for the IGA. The parameters discussed and tested in this paper are: mutation chance,
crossover chance, population size, crossover function, selection function.

525 Justin Lovinger et al. / Procedia Computer Science 36 (2014) 523 – 528

Figure 1 Representation of a chromosome

Indeed, additional parameters are theoretically possible. Our OGA encodes all parameters in binary format.
Mutation chance and crossover chance are converted into floating point values during decoding; population size is
decoded into an integer; and crossover and selection function are decoded into strings by checking the value of the
corresponding bits. The strings for crossover and selection function are used to determine these from a set of
preprogrammed functions. The encoding of the IGA is determined by the specific problem it solves.

Figure 2 (a) inner/outer GA relationship; (b) effect of smoothing factor

When our optimization system is utilized, it first generates a number (n) of random parameter sets for the IGA,
encoded in binary. This is the population of the OGA. The IGA is then run in its entirety n times, each time using
one of the generated parameter sets. How long the IGA takes to solve its defined problem determines the fitness of
its parameter set. Once each parameter set has a fitness, a new generation of fitness sets can be generated by the
OGA, through crossover and mutation. This process (Figure 2a) is repeated to determine the optimal parameter set.

However, the random nature of genetic algorithms leads to large variation in the performance of the IGA, given a
set of parameters. This is because genetic algorithms depend on random initial populations, random crossover
points, and random mutations. A GA can produce an initial population that includes the solution, which results in a
solution being found very quickly, regardless of parameters. A GA can also produce a poor initial population, with
very “unlucky” crossovers and mutations, which results in a solution being found very slowly, if at all. GAs always
have a very good best performance and a very poor worst performance, but the average performance for a GA can
vary greatly. Therefore, we aim to optimize this average performance. We do this by running the IGA several times,
and taking the average of their run times. The number of times the IGA is run before averaging is the smoothing
factor. Figure 2b shows how the smoothing factor affects the variation in performance. Our goal is to minimize this
variation, so that the fitness for a set of parameters approaches the average performance. However, because a greater
smoothing factor slows the optimization process, there must be a compromise. Our tests show that at least 20 runs
per parameter set is necessary for proper optimization, and more than 100 runs shows little improvement. In addition
to the time factor, the number of times the IGA cannot find a solution is used to penalize the fitness for a set of
parameters. This ensures that a set of parameters is consistent as well as fast.

The evaluation function for the IGA depends on the problem it is solving. However, in order for this technique to
properly function, the IGA must be able to implement a stopping point of some form. This stopping point can either
be a known solution, or a fitness threshold that indicates that the GA is doing its job well. The purpose of a fitness
threshold in this situation is to provide a time factor. Despite this threshold not being a true solution, the faster the
genetic algorithm reaches this fitness threshold, the more efficient it is, and the better its parameters are.

The scheduling of computational tasks on a processor for real time systems is a common problem addressed by
genetic algorithms5. Efficient allocation of distributed tasks to a CPU results in maximized utilization of the

526 Justin Lovinger et al. / Procedia Computer Science 36 (2014) 523 – 528

processor. The application of a genetic algorithm to process scheduling eliminates ramifications generated by
exhaustive search, including inconsistency of performance and overall limited speed of processes. Through training
such a genetic algorithm, we can minimize the time it takes to optimally schedule presented tasks. While the inner
genetic algorithm seeks an optimal scheduling solution for an input of processes, the outer genetic algorithm seeks
an optimal performance for the inner genetic algorithm.

Typically, a process-scheduling genetic algorithm will terminate after a maximum number of generations, using
the best solution up to that generation as the final one. With our method, we can elicit this solution in a fraction of
the time. Our tests show an average speed improvement of 10 times. The scheduling algorithm can therefore explore
10 times the number of generations in the same amount of time, and potentially find an even more favorable
solution. Real time systems do not guarantee that all deadlines will be met. Optimization of a genetic algorithm for
process scheduling can minimize missed deadlines, and increase process throughput.

4. Testing methodology

Table 1. Our optimization problems

Problem Equation Solution

Ackley’s Function (,) = 20exp (0.2 0.5(+) exp 0.5(cos(2) + cos(2))+ 20 + 0.0

CrossInTray function (,) = 0.0001 sin() sin() exp (100 +) + 1 . -2.06261

Lévi Function N.13 (,) = (3) + (1) 1 + (3)+ (1) 1 + (3) 0.0

Eggholder function (,) = (+ 47) sin + 2 + 47 sin | (+ 47)| -959.6407

Hölder table function (,) = sin() cos() 1 + -19.2085

Schaffer function N. 2 (,) = 0.5 + sin () 0.51 + 0.001(+) 0.0

To test our method, a set of minimization problems (presented in Table 1) are solved with a genetic algorithm.
Each problem has some number of floating point values as inputs, and a known solution that must be discovered by
a GA. For each problem, the GA encodes a number of floating point values in binary form. The evaluation function
for each problem decodes the chromosome, inputs the resulting floating point values into the problems equation,

527 Justin Lovinger et al. / Procedia Computer Science 36 (2014) 523 – 528

and, given that these are minimization problems, returns the inverse of the equations output. If the output of the
equation is within 0.1 of the problems solution, the problem is considered solved, and the GA terminates. Our goal is
to optimize the time it takes this GA to solve these problems. This GA is our inner genetic algorithm.

To test that our method is effective, cross validation is performed as it provides a robust test of our method by
utilizing multiple problems. With cross validation, we can measure the degree of optimization for a training set, on
which a GA is directly optimized. Additionally, we can test for overtraining by measuring the effects of an
optimized genetic algorithm on a testing set on which the genetic algorithm is not directly optimized.

To perform our cross validation, we first construct three training sets with four problems each, and three
corresponding testing sets, with the remaining two problems from our problem set in Table 1. For each training set,
we utilize our method to determine the optimal parameters for a genetic algorithm that solves the problems. The
same parameters are used for all problems in the training set. With these parameters, we time how long, on average,
a genetic algorithm takes to solve the problems in the training set, and the corresponding testing set. Additionally,
we perform the same process with a standard set of parameters, not obtained with our method. This allows us to
compare the effects of our optimization. We also measure how often our optimized genetic algorithms are able to
find a solution. This ensures that our optimized genetic algorithms are both efficient and effective.

5. Results

Table 2. GA parameters

Fold 1 Fold 2 Fold 3 Standard

Mutation Chance 0.0784 0.0901 0.8941 0.02

Crossover Chance 0.5333 0.1725 0.0941 0.7

Selection Function Stochastic Stochastic Stochastic Roulette

Crossover Function One Point Uniform One Point One Point

Population Size 6 8 6 20

Table 2 shows the optimized parameters for each fold. A fold is a combination of a training and corresponding
testing set. These parameters are discovered by running the OGA on an IGA that solves the training set of equations
for the fold. The standard parameters are hand picked, and fall within the range of expected parameters for a
canonical genetic algorithm. Mutation chance is the chance of a bit being flipped during mutation. Crossover chance
is the chance, for each set of parents, that crossover will occur. Selection function is the function used for selecting
parents. Roulette selection is the canonical roulette selection algorithm. Stochastic universal sampling is a selection
algorithm, similar to roulette selection, which guarantees that chromosomes with greater than average fitness are
selected, at the expense of diversity. Crossover function is the function used for crossing two parents during
crossover. One point crossover is the canonical one point crossover algorithm. Uniform crossover randomly swaps
bits between two parents. Population size is the number of chromosomes in the population of every generation.

Table 3 shows the results of our performance analysis. These results are obtained by using a genetic algorithm to
solve a set of optimization problems, using either the parameters obtained from our method, or the standard
parameters. The standard parameters for each fold are the standard parameters in Table 2. The optimized parameters
for each fold are the parameters in the corresponding fold in Table 2. The “Time (Seconds)” rows are the result of
timing the IGA and taking the average of 500 runs. The “Times Improvement” rows show the improvement from the
standard parameters to the optimized parameters. The “% Solutions Found” rows show the percentage of runs that
discovered a solution, for the optimized parameters.

528 Justin Lovinger et al. / Procedia Computer Science 36 (2014) 523 – 528

Table 3. Performance analysis

Fold 1 Fold 2 Fold 3 Mean STD

Time (Seconds): Standard Parameters (Training Set) 0.0462 0.0677 0.0546 0.0562 0.0089

Time (Seconds): Standard Parameters (Testing Set) 0.0587 0.0143 0.0325 0.0352 0.0182

Time (Seconds): Optimized Parameters (Training Set) 0.0053 0.0052 0.0082 0.0062 0.0014

Time (Seconds): Optimized Parameters (Testing Set) 0.0063 0.0072 0.0167 0.0101 0.0047

Times Improvement (Training Set) 8.7894 12.9785 6.6496 9.4725 2.6285

Times Improvement (Testing Set) 9.2631 1.9916 1.9390 4.3979 3.4403

% Solutions Found (Training Set) %100.0 %100.0 %100.0 %100.0 0.0000

% Solutions Found (Testing Set) %100.0 %100.0 %100.0 %100.0 0.0000

The large variation between folds is expected because each fold consists of a unique set of equations, and each
equation is unique in its requirements and difficulty. The times improvement row shows that, despite the large
variation, all folds show a large improvement to both the training set and the testing set. As expected, the largest
improvement exists for the training set, but the improvement to the testing sets show that our method does not
overtrain the genetic algorithm. Furthermore, our method does not sacrifice speed for accuracy, as the “% solutions
found” rows indicate.

Overall, our optimization results in a massive 9.5 times efficiency increase on average. This allows for much
faster genetic algorithm searches with lower system requirements. Also, nearly 10 times more generations can be
explored in the same amount of time. By exploring more generations, more effective solutions can be found with
genetic algorithms.

6. Conclusions

Genetic algorithms represent a powerful tool for adaptive systems. However, their performance can vary greatly,
depending on parameters. We have presented a method for optimizing these parameters, with recommendations for
implementation. We have explored the effects of this optimization on a process scheduling problem, and tested our
method using a set of common optimization problems and cross validation. Our results show an average efficiency
improvement of 9.5 times for directly optimized problems, and 4.4 times for indirectly optimized problems.
Furthermore, given the problem, “Ackley’s Function”, our method can optimize a genetic algorithm to solve this
problem in 7.5 minutes. Overall, this method is fast, effective, and maintains accuracy and generalizability.

References

1. Myungryun Y., and Mitsuo G., “Multimedia Tasks Scheduling Using Genetic Algorithm”, Asia Pacific Management Review (2005) 10(6),
373-380.
2. T. Potuzak, “Feasibility Study of Optimization of a Genetic Algorithm for Traffic Network Division for Distributed Road Traffic Simulation”
3. Z.Michalewicz, T.Logan, and S.Swaminathan, “Evolutionary operators for continuous convex parameter spaces”
4. M. Anthony Lewis, Andrew H. Fagg, and George A. Bekey, “Genetic Algorithms for Gait Synthesis
in a Hexapod Robot”, Published in: Zheng, ed. Recent Trends in Mobile Robots, pp 317-331, World Scientific, New Jersey, 1994.
5. L.M.Garder, and M.E.Høvin, “Robot Gaits Evolved by Combining Genetic Algorithms and Binary Hill Climbing”, Proceeding of: Genetic and
Evolutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Washington, USA, July 8-12, 2006
6. G.Capi, Y.Nasu, L.Barolli, and K.Mitobe, “Real Time Gait Generation For Autonomous Humanoid Robots: A Case Study For Walking”,
Robotics and Autonomous Systems 42 (2003) 107-116.
7. Sheng-Wu Xiong, Yong-Xiang Zhao, and Ning Xu, “SAREC-GA: a security-aware real-time scheduling algorithm with genetic algorithm”,
Proceedings of the 6th International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007.

