Gist: General Integrated Summarization of Text and
Reviews

Justin Lovinger, Iren Valova, Chad Clough

Abstract

E-commerce is rapidly growing, with review websites hosting hundreds of reviews on average for
any product. Reading so many reviews is tedious, time consuming, and with the proposed Gist,
unnecessary. We introduce Gist, a system to automatically summarize large amounts of text into
informative and actionable key sentences. With unsupervised learning and sentiment analysis, Gist selects
the sentences that best characterize a set of reviews. All of this is done in seconds, without prior
adjustment or training. Gist extends the current state of the art with a modular system that can take
advantage of a-priori knowledge and adapt to new domains through easy modification and extension. Gist
is a general framework, able to summarize any set of text, and easily adapt to specific domains. A robust
comparison with state-of-the-art summarization algorithms, on datasets containing hundreds of
documents, proves Gists ability to effectively summarize text and reviews.

1 Introduction

People want to know the value of a product before purchase. Whether a meal at a restaurant, a
new movie, or a blender. In the Internet age, online reviews are essential for determining this value. The
growth of e-commerce presents another problem: quantity of reviews. Reading reviews requires time and
effort from the consumer. With hundreds of reviews, this effort becomes a burden. While aggregate
ratings alleviate this problem, they do not provide detailed information. One individual may be concerned
with the atmosphere of a restaurant, while another cares only about the quality of the fish they serve. Most
websites provide only a single overall numeric rating, which gives no information about specific quality
factors.

With Gist, we summarize text reviews into a few key sentences that capture the overall sentiment
about the product. By presenting natural sentences, we provide easy to digest information that is not
expressed by overall ratings. To avoid the difficult problem of generating natural language for our text
summary, known as text abstraction [1 - 3], we use sentences from the text as our summary. This
technique is known as text extraction [1, 3 - 6], and is currently the premier method in the state-of-the-art
[4]. Unsupervised learning allows Gist to summarize any product without prior knowledge or training.
The result is a generalizing system that effectively summarizes any set of reviews in any language.

Gist extends the state-of-the-art with easy customization and rapid adaptation. Gist is a modular
text summarization framework. Rigid systems inevitably lack requirements for specific domains. Rather
than attempting to create a catch-all system, we design Gist to allow changes within the existing system,
while focusing on core features that are essential for text summarization. To that end, we do not

implement features that focus on specific parts of speech, but provide a framework, which makes such
modification easy.

Section 2 discusses text summarization background and related works. Section 3 provides an
overview of the Gist algorithm. Section 4 describes sentiment analysis, and how it relates to Gist. Section
5 describes the term frequency, inverse document frequency algorithm for relevance analysis, and how it
is used in Gist. Section 6 provides details on extending Gist, and presents two minor attributes that we
ecasily add to Gist. Section 7 provides a fitness function utilizing the discussed attributes. Section 8 is a
discussion of various metaheuristic search methods, leading into our use of metaheuristic search for Gist.
Section 9 examines performance optimizations for Gist. Section 10 compares Gist to state-of-the-art
summarization algorithms on datasets containing hundreds of documents, using Rouge. We conclude with
section 11.

2 Related Works

The authors in [7] developed a review summarization system that focuses on rating features with
association rules and sentiment analysis [8 - 11]. Microsoft developed a similar system for restaurant
reviews presented in [12]. The authors in [13] use syntactic tree structures and conditional random fields
to achieve similar review summarization. These systems take a structural approach to review
summarization, explicitly analyzing text to discover features before summarizing these features. The
result is similar to a spreadsheet of feature / value pairs. When features are properly extracted, this system
is effective. However, this makes feature extraction a weak point that results in odd or confusing
summarization when a set of reviews is not structured as expected. This rigid system is also difficult to
adapt to specific considerations and domains. With the proposed Gist, we take a more flexible approach
that avoids the difficult and error-prone task of feature extraction.

Although we focus on review summarization, the Gist framework supports general text
summarization, and allows easy modification and extension for any text domain. While review
summarization systems are rare in the state-of-the-art, text summarization is plentiful. Supervised learning
methods for text summarization gained popularity in the early 2000s with the work of Peter Turney [14].
While the supervised approach still finds use, unsupervised methods quickly became the state-of-the-art
when the TextRank algorithm [15] proved versatile and effective. Recent works focus primarily on
improving performance in specific domains [16, 17] or multi-document summarization [1], rather than
exploring new approaches to summarization.

State-of-the-art summarization is dominated by two practical tools: MEAD [18, 19] and SUMMA
[19 - 21]. MEAD is a text summarization framework, within which numerous particular algorithms are
implemented, such as MEAD* [1, 22] for multi-document summarization; and MEAD-LexRank [22],
implementing the popular LexRank algorithm [23]. SUMMA is a set of text summarization resources built
on the GATE [24] text summarization framework.

The Gist framework plays to the requirements of modern summarization by allowing easy and
rapid adaptation to any domain. We also note that many of these summarization techniques can be easily
incorporated into the Gist framework, and work alongside or instead of the core attributes presented in the
following sections.

3 The Gist Algorithm

Gist is composed of a few disjoint components (presented in Figure 1), that effectively
summarize when brought together. The core of Gist is a set of attributes calculated from and assigned to
each sentence from the set of text or reviews being summarized. Each attribute is a numeric value
calculated from the text in a sentence. A sentence is defined as a sequence of characters followed by a
stop character like period, exclamation mark, or question mark, then followed by whitespace. Of these
attributes, the two most important are sentiment and relevance. However, any number of attributes can be
assigned to sentences, and special attributes can be calculated for specific domains to utilize a-priori
knowledge. With these sentence attributes, we perform metaheuristic search with a fitness function that
examines the attributes of N sentences, and selects the N sentences that best summarize the set of text.
These N sentences are then returned as the summary. The ability to add attributes with minimal effort
allows one to easily extend Gist for new domains or specific considerations. For example, if trying to
summarize the atmosphere of a restaurant, one can insert an attribute that gives extra fitness to sentences
that mention atmosphere. For clarity, we provide a step by step example:

1. Fetch: This step simply obtains the text, and is domain specific. In this example, the text consists
of only 5 sentences. For demonstration purposes, these imaginary sentences are simply referred to
by the labels s;.. s5. Real text can easily contain hundreds of thousands of sentences.

2. Calculate Attributes: Table 1 displays the calculated attributes for our example sentences. For
this demonstration, attribute values are fabricated. The following sections explain how these
attributes are calculated for real sentences.

[Fetch: Grab all text to summarize.]

v
4 N

Calculate Attributes: Sentiment;
SentimentMagnitude; Relevance;
Sentence Length; Product Name
Score

g J

v

4)
Cull: Remove sentences with poor

attributes; For a faster optimize phase
. J

v

\
Optimize: Find N sentences with the
best combined attributes; Weighted
sum of attribute scores; Non-linear
combination of sentimentscores

_J

Figure 1: Phases of Gist

3. Cull: Table 2 compares each sentences attributes to the given threshold values. The sentiment
magnitude threshold t,,, = 0.2, and the relevance threshold ¢, = 0.5. Note that sentiment has no
culling threshold. All attributes of a sentence must be greater than or equal to the corresponding
thresholds, or the sentence culled. We see that sentence s, is removed due to low sentiment
magnitude m, and sg is removed due to low relevance 7.

4. Optimize: For this example, our goal is to find 2 sentences from the text that most closely match
the overall sentiment of the text, which we define as -0.2 for this demonstration, while
maximizing relevance and sentiment magnitude. This goal is formalized as the fitness function
f(N)=10C(N) + 3m(N) + 6r(N), where N is a set of sentences, C(N) is the sentiment
closeness score (1) defined in the next section, m(N) is the average sentiment magnitude of N,
and r(N) is the average relevance of N. Note that this goal is easily modifiable. Table 3 displays
the fitness value and calculation for each sentence not culled. Although the set of sentences
(51, 52) most closely fit the overall sentiment, the greater relevance of s3 result in a higher fitness
score for (S3,53). A metaheuristic search algorithm will explore the space of sentence
combinations, to find the set with the highest fitness. For this example, we can easily see that the
set (s, 53) is the best combination.

Table 1: Calculated Attributes of Example Sentences
Sentence Sentiment (s) Sentiment Magnitude (m) | Relevance ()
S1 0.4 0.4 0.6
Sy -0.4 0.4 0.5
S3 0.7 0.7 0.9
Sy -0.1 0.1 0.6
Sg -1.0 1.0 0.3
Table 2: Comparison of Attributes and Culling Thresholds
Sentence s m m22?t, |r r>7t, Culled?
51 0.4 0.4 04>02 |06 0.6 > 0.5
Sy -0.4 0.4 04>02 |05 0.5>0.5
S3 0.7 0.7 0.7>0.2 [09 09=>0.5
Sy -0.1 0.1 0.120.20.6 0.6 > 0.5 | Culled
Sg -1.0 1.0 1.0>0.2 | 0.3 0.3 2 0.5 | Culled
Table 3: Calculated Fitness of Sentence Combinations

Sentences Fitness Equation Fitness
(51,52) 10*0.96 + 3%0.40 + 6x0.55 = | 14.12
(51,53) 10%0.64 + 3x0.55 + 6% 0.75 = | 12.55
(52,53) 10%0.89 + 3x0.55 + 6x0.70 = | 14.76

4 Sentiment Analysis

At its core, sentiment analysis [8 - 11] is a dictionary, which maps words to sentiment polarity.

Words like “great”, “good”, and “awesome” have a positive sentiment, while words like “terrible” and
“bad” have a negative sentiment. Many words have no sentiment at all, such as “the”, “and”, “a”. The

greatest

difficulty lies in generating this dictionary. In this paper, we do not focus on the generation of a

sentiment dictionary. For Gist, we use the expansive WordNet lexical database [25]. Beyond the core
sentiment dictionary, pattern analysis provided by the TextBlob library [26] allows for more accurate
sentiment classification by recognizing linguistic constructs such as negation, and in some cases sarcasm
[27].

It is worth discussing the disadvantages of sentiment analysis, both in the current state of art, and
in general. First, we make no claims to the optimality of our sentiment analysis. Certain forms of speech,
such as sarcasm and unusual use of words, can result in a misclassification of sentiment. Even if our
sentiment analysis is perfect, the issue of subjectivity arises. To perfectly classify sentiment, the analysis
must tailor its behavior to an individual. Language is a complex construct, and everyone interprets words
and sentences differently. A sentence that is very positive to one individual could be negative to another,
based on culture or personal experience. Even human judges perform poorly at sarcasm classification
[27]. As it is unreasonable to tailor our sentiment analysis to every individual, we must settle for an
imperfect system. However, since sentiment analysis in Gist acts only as heuristic guidance, Gist can
function well in the intended environment.

4.1 Sentiment Attribute in Gist

Sentiment analysis plays a key role in Gist. Reviews are about feeling. One review may have
great things to say about a product, which is a positive sentiment. Another may hate the product, which is
a negative sentiment. Our first step to summarizing a set of reviews is determining the overall sentiment
of the reviews. Note that the sentiment analysis procedure described in Section 4 can be applied to the
entire set of text to obtain the overall sentiment. Next, we obtain the sentiment for every sentence. By
examining the average sentiment of a set of N sentences, we can determine how close the N sentences
match the overall sentiment of the product. As such, a product with generally positive reviews will have a
positive summary, and vice versa. This is formalized in Equation (1):

1
(P_Savg(N))2+1

C(N) = (1)

where P is the overall product sentiment, and Sg,,4(N) is the average sentiment of a set of N sentences.
With this function, € = 1 when average sentiment matches P. As average sentiment diverges from P, C
approaches 0.

We also examine sentiment magnitude, the absolute value of sentiment. This heuristic leads us to
sentences that are well opinionated. When generating a summary, we want sentences that tell us
something about the product, which is to say, we want opinions. A sentence such as, “I ordered the
chicken” tells us less than, “The chicken was wonderful”.

5 TF-IDF

The term frequency (TF) component of TF-IDF dates back to 1957 with [28]. The concept is
simple, the more a word is used in a set of text, the more relevant it is to that set of text. This is
formalized in Equation (2):

TF(w) = (count of w in T) / (count of terms in 7) 2)

Where w is a word (or term), and T is a set of text. Term frequency alone would give disproportionate
weight to commonly used words such as, “and”, “the”, “a”. Even though these words show up frequently
in any set of text, they are not relevant because they are simply necessary grammar. The fact that they are
omnipresent allows us to solve this problem with inverse document frequency (IDF), first introduced in
[29]. Like TF, IDF is conceptually simple. The more documents a term appears in, the less relevant it is
for any particular document. This is formalized in Equation (3):

IDF(w) = In(count of documents / count of documents containing w) 3)

If a term appears in every document, its IDF value is 0, while a term that appears in only one document
can easily have a value in the double digits. Combining these two concepts, we obtain the TF-IDF
algorithm:

TF — IDF(w) = TF(w) * IDF(w) 4

Conceptually simple, and dating back to the mid 90s, this algorithm is proven effective and timeless, with
numerous examples of modern usage [30 - 32].

5.1 Relevance Attribute in Gist

If we only examine sentiment when generating a summary, an issue arises. For the “McDonalds”
restaurant, the summary could include, “Star Wars is a really great movie”. This sentence is completely
irrelevant to the restaurant. To eliminate such sentences, we use the TF-IDF algorithm given in Equation
(4). For our document corpus, we use the well tested Reuters-21578, Distribution 1.0 [33, 34], containing
21578 documents.

The core of TF-IDF is a dictionary of word values. To obtain this dictionary, we must calculate
the TF value of every word in the set of reviews we are summarizing (Equation 2), and the IDF values for
our corpus of documents (Equation 3). Next, using Equation 4, we obtain the relevance R for sentence S
with m words in Equation (5):

R(S) = Ywes TF-IDF(w) 5)

m

In short, R(S) is the average TF-IDF score of all words, w, in sentence S. Normalizing by the number of
words, m, allows us to obtain a relevance value independent of the size of the sentence, therefore
providing more effective relevance comparison. This attribute allows us to penalize outlier sentences, and
reward sentences that closely match the average language used in the set of reviews.

6 Extensibility

Review summarization is a narrow view of the possible applications of Gist. The ability to easily
add attributes allows Gist to extend to other domains without reinventing the core system. General text
summarization is already possible with the core Gist attributes.

For example, one can adapt Gist to extract sentences mentioning recent news from social media.
Each set of text can be taken from different social media posts, or from many posts from each person. An
attribute that gives great weight to sentences containing phrases related to recent news, and a filter for
these phrases, extend Gist towards the domain of news summarization. Combined with the core Gist
attributes, this system could find sentences that fit people's views of recent news. If interested in only
positive or negative views, a corresponding sentiment filter can be added.

We note that, while the formulation in Figure 1 and Section 7 specify a linear combination of
attributes, non-linear attributes are possible. Attributes can be calculated from a set of sentences, during
the optimization phase, at the expense of performance. The sentiment attribute in Section 4.1 is an
example of a non-linear Gist attribute.

It is also easy to improve Gists effectiveness as a general text or review summarization system.
As an unsupervised learning system, the effectiveness of Gist summarization is determined by user
opinion. Although we have limited resources to thoroughly test the effectiveness of various combinations
of attributes, if more are added, user opinion can be obtained on whether the attributes improve
summarization ability. This step could be repeated multiple times to optimize text summarization. Giving
greater weight to sentences with certain parts of speech is an example of an attribute that may improve
text summarization.

6.1 Minor Attributes in Gist

Beyond the primary attributes, a number of minor attributes provide additional direction for Gist.
For one, Gist grants additional fitness to sentences that mention the name of the product, or to a lesser
extent, part of the name. This reduces the chance of generating a summary with sentences that are out of
context. The sentence, “Star Wars is a really great movie”, is given greater weight than, “That is a really
great movie”.

By examining the length of a sentence, we provide heuristic guidance towards sentences that fit
the concept of a summary. Short sentences are penalized for not providing enough information, while
long sentences are penalized for being too verbose. The optimal sentence length is empirically determined
to be 15 words. This conclusion is reached by calculating the average sentence length from hundreds of
reviews that are deemed very helpful by the Yelp community.

7 Fitness Function

Each attribute presented in Sections 4-6 provides a value correlating with the effectiveness of a
sentence or set of sentences for summarization. These attributes consider sentiment, relevance, length,
and title (name) of the document or product. Further attributes can be easily added to consider other
aspects of a good summary. Because each attribute individually scores the effectiveness of a sentence or
set of sentences for summarization, combining these attributes with weighted summation provides an
effective fitness function.

This fitness function must first combine individual sentence attributes into a combination value
for each attribute. Some attributes are combined as an average of individual sentence attributes, others are
a non-linear combination. A weighted summation of attribute combination values then provides the final
fitness value. Our attribute weights are given in Table 4. Note that each attribute is defined in Sections 4-
6. This weighted sum benefits from reliable value ranges. Apart from relevance, all attributes fall within a

predictable range. For relevance values to be more predictable, we normalize from 0 to 1. Algorithm 1
presents this fitness function for a set of N sentences.

Table 4: Attribute Weights

Attribute Weight
Sentiment, C(N) 10
Relevance 6
Sentiment Magnitude 3
Length Score 2
Name Score 1

Algorithm 1 Gist Fitness Function

Set fitness F =0

for attribute A, excluding sentiment do
F=F+W(A)* Agg(N)

end for

F=F+ W(C) * C(N)

W(A) is the weight of attribute A, W(C) is the weight of the sentiment closeness attribute, and Aayg(N) is
the average value of attribute A for sentences in N. Of our attributes, only the sentiment closeness
function C(N) (1) is a non-linear combination. As described in Section 6, Gist can be extended with
additional non-linear attributes.

Since attributes are pre-calculated for every sentence, the fitness function is very fast, requiring
only an addition operation for every attribute of every sentence, and a multiplication operation for every
attribute, with the exception of C(N), which scales linearly with the size of N. Fitness function scaling is
formalized as O(ak), where a is the number of attributes and & is the size of N.

8 Metaheuristic Search

The ability to traverse a general fitness landscape makes metaheuristics a powerful search tool.
Each metaheuristic uses the same fitness function, defined in Section 7. This fitness function takes a set of
sentences and returns a single number that defines the quality of the given sentences with regard to
summarizing the text. In Gist, this fitness value is determined by a combination of sentence attributes
such as sentiment, TF-IDF relevance, and other values defined by a user. The generality of metaheuristic
search lets us change the definition of a good sentence by adjusting the fitness function, without
modifying the process that discovers the best sentences for summarization.

Many metaheuristics exist to perform search. We explore a popular subset of metaheuristics. The
classic genetic algorithm (GA) remains an effective search method [35 - 37]. More recently, metaheuristic
methods rooted in mathematics have grown in popularity. Particle swarm optimization (PSO) [38] is now
a staple of metaheuristic methods. The recently developed gravitational search algorithm (GSA) [39] is
functionally similar to PSO, but is inspired by physics rather than nature. The Gist fitness function works
with most metaheuristics. As such, the choice of metaheuristic affects only the efficiency of the search for

the best set of sentences. This is an interchangeable component that does not affect the core process of
Gist.

8.1 Genetic Algorithm

The GA [35 - 37], inspired by evolution in nature, is one of the oldest metaheuristics. Despite its
age, this algorithm is one of the most popular metaheuristics in use today, a testament to its effectiveness.
One advantage of the GA is extensibility. The use of interchangeable crossover, selection, and mutation
functions allows one to tailor the GA to a particular problem.

Selecting candidate solutions, or chromosomes, based on fitness creates pressure to improve
fitness, and forms the core of the exploitation component of this metaheuristic. Selected chromosomes are
then combined to explore potential solutions in the portion of the problem space that high fitness
solutions occupy, adjusting potential solutions towards higher fitness, and exploring new space. Mutation
maintains diversity in the chromosome population by randomly adjusting chromosomes independent of
fitness.

In this paper, we do not attempt to improve upon the GA literature. Instead, we make use of the
staples already developed. One-point crossover takes two parent chromosomes, and generates two
children chromosomes by taking one part from each parent, according to a randomly selected crossover
point, displayed in Figure 2.

Figure 2: One Point Crossover

Roulette selection randomly selects parents for crossover, with a probability of selection proportional to
the fitness of the chromosome. Bit string mutation examines every bit of every child chromosome, and,
with probability p, flips the bit from 0 to 1, or 1 to 0. Conversely, with probability (1 - p) the bit remains
unchanged.

8.2 Particle Swarm Optimization

Like GAs, PSO [38] is inspired by nature, but is less dependent on controlled randomness. By
studying the swarming behavior of birds and fish, the authors in [38] developed this algorithm to mimic
the social behavior of animals that can scatter, change direction suddenly, and regroup to discover an
optimal path.

PSO initializes a population of particles at random positions in a problem space. Random
acceleration vectors drive these particles to explore new solutions. Acceleration towards high fitness
particles, and the best known solution, allows for the exploitation of known solutions in an effort to find
small adjustments that increase fitness. Figure 3 shows how random acceleration and acceleration towards
high fitness areas may combine to give the movement of low fitness particles through a problem space.

Unlike GA, PSOs small adjustments of a previous population allows for fine grained exploration
of continuous problem spaces. Even without a continuous problem space, PSOs behavior causes low

fitness particles to quickly swarm towards high fitness solutions, allowing rapid adjustment. However,
this high exploitation comes at the cost of potentially converging to local minima.

8.3 Gravitational Search Algorithm

GSA [39] has many similarities to PSO. Like it, iterative adjustments are made to an initially
random population, as opposed to generating completely new solutions from iteration to iteration as GA
does. Also like PSO, GSA draws low fitness solutions towards high fitness solutions as a form of
exploitation. Unlike PSO, GSA is inspired by the gravitational motion of bodies in free space, as dictated
by Newton's laws.

A

Flgure 3: Partlcles drawn towards hlgh fitness [40]

In GSA, every potential solution has a mass proportional to its fitness. As in natural physics,
bodies attract one another, higher mass bodies attract more and are less affected by the attraction of other
bodies. This mechanism alone would quickly cause all bodies to converge towards the highest fitness
bodies. Unless the global optima lies along the path of one of these bodies, this would result in premature
convergence to a local optima. To encourage exploration of the problem space, the summation of force on
a body and the velocity update for a body is randomized. Specifically, the total force on a body in a one
dimension is given as:

F(t) = X}, rand;F{j(t). where j # i (6)

where F} (t) is the total force on body i in dimension d at time step ¢, rand; is a random number between
Oand 1, F d(t) is the force of body j on body i in dimension d at time step ¢, and N is the number of

bodies. As such, the force that each body applies to every other body in each dimension is randomized.
Depicted in Figure 4 are two bodies of equal mass, equidistant in the x and y dimension. The force for
each dimension is equal according to Newton's laws, unlike GSA.

The velocity update is likewise randomized for each body by taking a random fraction of the
velocity in each dimension and adding its acceleration in that dimension, to obtain the velocity for the
next time step. This is formalized as:

vt + 1) = rand; v (t) + al(t) (7

where vid (t) is the velocity of body i in dimension d at time step ¢, rand; is a random number between 0
and 1, and af(t) is the acceleration of body i in dimension d at time step . Presented here are the

equations that most differentiate GSA from standard Newtonian motion. For a more in depth presentation
of the GSA algorithm, see [39].

Force vector fora
single dimension

Body of mass O

Figure 4: Movement of bodies in GSA

9 Performance Enhancements

The system presented thus far relies on a metaheuristic without guarantee of finding the optimal
solution in a potentially large problem space. This means, for very large problems, if most sentences are
poor with regard to the fitness function, the summary may be poor. To more consistently discover the
optimal set of sentences, we must reduce the problem space by culling poor sentences, thereby optimizing
the metaheuristic.

9.1 Culling

Every sentence adds to the search space of the metaheuristic search process. However, many
sentences can easily be deemed unsuitable due to the value of a single attribute. Completely neutral,
irrelevant, or extremely long sentences can immediately be discarded from the search space, thereby
saving time, and increasing the chance of finding the optimal set of sentences.

To this end, we introduce a technique we call intermediate culling. As each attribute A of
sentence S, given as A(S), is calculated, it is compared to a threshold. If the attribute value does not pass
the threshold, the sentence is immediately discarded. No additional attributes are calculated for the
discarded sentence. Otherwise, the next attribute is calculated, and this process repeats. This is presented
in Algorithm 2.

Algorithm 2 Calculating Sentence Attributes With Culling

fetch all text T
for sentence S in T do
for attribute A in set of attributes to calculate do
calculate A(S)
if A(S) < culling threshold for A do
stop calculating attributes for S
remove S from set of sentences
skip to next sentence in T

end if
end for
end for

The culling algorithm requires only a single pass of the sentence dataset. In the worst case, when no
sentences are culled, performance scaling is given as O(sa) where s is the number of sentences and a is
the number of attributes. In actuality, average performance is better, due to attributes not passing the
threshold, resulting in fewer than a attributes being calculated for some sentences. Average complexity
will depend on the culling thresholds and the nature of the sentence dataset.

9.2 Metaheuristic Comparison

In this section, we present our performance results for each of the following metaheuristics:
canonical genetic algorithm (GA), particle swarm optimization (PSO), and gravitational search (GSA).
Each algorithm runs for 1000 iterations with the best fitness recorded. Since these metaheuristics are
stochastic, each test is run 1000 times, and the results are averaged. Standard deviation (SD) is also
presented to determine consistency of performance. This test is performed on three different sets of
restaurant reviews. One-way analysis of variance (ANOVA) [41, 42] is also presented to ensure statistical
significance of these results.

Each algorithm has a population size of 20. The GA has a mutation rate of 0.02, a crossover rate
of 0.7, a standard roulette selection function, and uses one point crossover. PSO has an ® value of 0.5, a
¢pvalue of 0.5, and a ¢4value of 0.5. Where w is a scaling factor for particle velocity, ¢, is the pull of a

particle's best known position, and ¢ is the pull of the global best known position. GSA has an initial G

value of 1, and a G reduction rate B of 0.5. The GA uses a binary chromosome of size ceil(log,S) * N,
where S is the number of sentences after culling and N is the number of sentences to include in the
summary. To obtain sentences from this binary chromosome, a block of binary is decoded into an integer
index N times. If an index is out of bound for the array of sentences, the chromosome is immediately
given a very low fitness. The PSO and GSA use a solution vector of N real numbers, which can easily
become indices by taking the floor of each real number.

The p-values in Table 5 show high statistical significance in the difference between GA, PSO,
and GSA, on each set of reviews, as given by the low p-values. As such, we can confidently state that the
variation between performance means in Table 6 is due to the algorithms themselves, and not random
variance. We note that, although ANOVA assumes normality of data and equality of variance, the central
limit theorem states that, for large sample sizes, parametric tests like ANOVA are robust even if the data
violates these assumptions [42- 44].

Table 5: Statistical Significance of Metaheuristic Comparison (ANOVA)

Review Set F-value p-value < 0.05
Reviews 1 1205.13 0.0000 < 0.05
Reviews 2 1664.55 0.0000 < 0.05
Reviews 2 1037.11 0.0000 < 0.05

As shown in Table 6, GA achieves the highest fitness for all sets of reviews, with highest
consistency, as indicated by the lowest standard deviation (SD). However, PSO and GSA follow closely.
While PSO and GSA excel at exploring continuous problem spaces, the discrete nature of this problem
voids that advantage. GA on the other hand is designed for discrete problem spaces such as the Gist
problem tested here. GA also has higher exploration, giving it an advantage in this large problem space.
PSO and GSA excel in problem spaces with smooth gradients, but selecting sentences results in a
problem space resembling a complex step function with many basins of attraction. These basins easily
trap PSO and GSA, while the mutation operators of GA allow it to escape and continue the search for the
optimal solution. These factors favor the time tested performance of GA, making it most effective at
determining the best sentences to form a summary from a set of text.

This analysis leads us to implementing GA as the metaheuristic search component of Gist.
However, Gist is naive to its particular metaheuristic algorithm. As long as a metaheuristic is compatible
with the fitness function given in Algorithm 1, it will function with Gist. Given the vast number of
metaheuristics developed, we do not perform an exhaustive comparison. Instead, we use it as guidance
when selecting a metaheuristic for Gist. In the classic tradeoff of exploration vs exploitation, GA has
greater rate of exploration than PSO and GSA. This proves advantageous for the large problem space Gist
must search. GA also searches a discrete problem space, while PSO and GSA excel at continuous
problem spaces. As such, we conclude that high exploration, discrete metaheuristics function best with
Gist.

Table 6: Metaheuristic Comparison

Reviews 1 Reviews 2 Reviews 3 Mean
Mean Best Fitness 17.91 17.82 15.79 17.17
GA
Best Fitness SD 0.522 0.393 0.303 0.197
Mean Best Fitness 17.61 17.45 15.46 16.84
PSO
Best Fitness SD 0.543 0.581 0.370 0.293
Mean Best Fitness 16.72 16.65 14.97 16.11
GSA
Best Fitness SD 0.506 0.309 0.256 0.214

Table 7: Summarization Algorithm Comparison

Algorithm
Dataset Gist TextRank LexRank
Avg F-Score 0.22093 0.193148 0.150139
Avg Recall 0.4212 0.495914 0.570195
Opinosis
Avg Precision 0.153134 0.121997 0.089143
Avg Runtime 0.059655 0.366839 0.616853
Avg F-Score 0.136521 0.120366 0.098491
Avg Recall 0.324198 0.385268 0.494476
DUC 2004
Avg Precision 0.09108 0.071899 0.055598
Avg Runtime 0.027787 0.056858 0.038793
Avg F-Score 0.276999 0.292668 0.294835
Avg Recall 0.271538 0.2860066 0.46458
cmp-1g
Avg Precision 0.31577 0.340986 0.237358
Avg Runtime 0.067235 0.541721 1.383484

10 Benchmark and Comparison

Rouge [45], a tool for automatically evaluating text summarization allows us to efficiently
compare the effectiveness of Gist with state-of-the-art text summarization algorithms, on large
text datasets. Rouge-1, a 1-gram method, with stop words, and without synonyms is applied to
compare the similarity of automatically generated summaries with expert, gold standard,
summaries. Rouge-1 is shown to match human evaluations with high accuracy [45].

Three datasets are benchmarked: Opinosis [46], containing 51 sets of reviews about
hotels, cards, and various electronics, and professional summaries for each; single document
DUC 2004 [47], containing 500 news articles from the AP and New York Times newswire, and
professional summaries for each; and cmp-Ig [48], containing 183 scientific papers from
Association for Computational Linguistics conferences, with each corresponding abstract used
as a professional summary.

Gist is compared to two state-of-the-art text summarization algorithms: TextRank [15], a
graph-based ranking model inspired by Google’s PageRank; and LexRank [23], a method for
computing sentence importance based on eigenvector centrality with an intra-sentence cosine
similarity matrix. We omit text summarization ensembles like MEAD from our comparison to
focus on the performance of individual algorithms. Gist is fully capable of working with text
summarization algorithms like LexRank, in an ensemble.

Table 7 presents average recall, precision, and F-score for each dataset and algorithm.
These stats, in the context of text summarization, can be interpreted as follows:

e Recall: How much necessary information does the summary contain?

e Precision: How little unnecessary information does the summary contain?

e F-Score: How good is the summary? F-score is a combination of recall and precision.
Gist outperforms all comparison algorithms on all but the cmp-Ig dataset, as indicated by the
higher F-score. On the cmp-Ig dataset, Gist shows comparable performance with a fraction of
the runtime. Although Gist shows lower average recall, it consistently achieves high precision,
leading to overall higher F-score. These results indicate that Gist shows improved ability to
generate concise summaries, while maintaining most of the necessary information extracted by
state-of-the-art text summarization.

The modular nature of Gist allows for easy extension and improvement. A process of adding or
modifying attributes, then testing performance on one or more datasets can be taken to improve the
summarization ability of Gist. Rouge can be the test component of a modify and test improvement loop.
Drawing from results presented in Table 7, the addition of attributes giving value to sentences based on
text centrality, similar to LexRank, may improve the recall ability of Gist, leading to even higher
performance.

11 Conclusion

Gist is the proposed powerful modular system for extractive summarization of text and reviews.
Through metaheuristic search of sentences with Gist-calculated attribute values, Gist rapidly parses large
amounts of text for the general option contained therein. This ability is proven with empirical evidence.
By entering text from reviews for a product, the opinion is summarized in easily understandable human
language that captures details not present in numeric ratings.

Sentiment analysis and TF-IDF relevance form the core attributes of each sentence in Gist.
Additional attributes that provide heuristic guidance towards effective summary sentences are also
presented in Section 6.1. By adding an attribute to sentences and assigning it a weight, Gist automatically
integrates the new attribute into its summarization. This powerful mechanism allows for easy extension
into new domains or improved summarization through a-priori knowledge.

Our performance analysis shows that Gist scales linearly with the size of the text and the number
of attributes, making it efficient for large scale text parsing and data mining. Developers can easily adapt
Gist to extract specific concepts from text, while taking advantage of this fast performance. Such
adaptation allows data miners to quickly adjust to trends or implement new ideas and improvements.

Our algorithm comparison in Section 9 proves Gists ability to effectively summarize both reviews
and articles. Finally, we present real summaries generated by Gist, TextRank, and LexRank. Summaries
of various popular movies are presented in Table 8. For each movie, user reviews from metacritic.com are
obtained, and each summarization algorithm summarizes the combined review text. Tables 9, 10, and 11
each present a small selection of text relating to a topic or product, and a summary from each algorithm,
generated from the text.

Table 8: Movie Review Summaries

Star Wars: Episode IV -

Movie Title A New Hope The Matrix Saving Private Ryan
The plot was very Very good action movie, It will renew your faith in
interesting for it's time, with good story! mankind, while simultaneously
and still is today. horrifying you at man's folly.
If you haven't seen The
Star Wars is still, in my Matrix series, I pity you, for | I would certainly recommend
Gi opinion, the greatest film | you have missed the BEST | this movie to anyone that can
1st
Summary in this series and of all movie ever made, go see it | handle some graphic, painful,
time. NOW! bloody action.
Without a doubt this is The perfect illustration of The best war movie ever made.
not just the best star wars | control and power and how
movie but also the best it influences everything
sci-fi film ever made. around you
Great action scenes,story | All in all this film delivers Bookended by the most
and mind blowing special | great any day entertainment | shocking, searing battle
effects for the time(They | that is like Laurence sequences in film history,
still look good Fishburn said, " Saving Private Ryan is as
TextRank today).Without a doubt Unfortunately no one can be | powerful, devastating,
S this is not just the best told what the Matrix is you | memorable and moving as
ummary . . " .
star wars movie but also | have to see it for yourself. movies get.
the best sci-fi film ever And trust me once you do
made. you won't ever look at Sci-Fi
or other movies the same
way again.
It's Star Wars..... The Matrix. It's a reminder that, after all,
"Saving Private Ryan" is only a
It's Star Wars. A mind-bending movie. movie.
Star Wars. The Matrix! When he looks at Ryan (and the
LexRank camera is qut over his_ sh01_11d,
Summa so he is basically looking right
ry

at the camera) and says "Earn
this," he is saying that to all of
us.

Saving Private Ryan was such
an amazing movie.

Table 9: Pony Express Summaries

Title

Pony Express Moving Services

Text

These guys are the best. They quoted my move at $1100 and planned ample man
power and truck space for the move. They were very professional, fast and efficient. To
my surprise, the move only took 3 hours to load and unload (including drive time) and
my bill was only $500! They arrived at my apartment in Somerville at 8:30 and I was
moved in by 10:30 in JP. Pony Express is the best moving company ['ve dealt with.
Give them a call!

Pony Express was amazing. They did great work & were very efficient. I felt complete
trust in their ability with my belongings. We moved 45 mins away and nothing was
broken or missing or damaged by the end of it. Success! Will use them again.

This was my third move with Pony and they did their usual terrific job. Everything was
wrapped and packed quickly but carefully. The guys were pleasant and couldn't have
been more helpful once we got to the destination. It all took much less time than
expected. They're truly pros!

Gist
Summary

Pony Express is the best moving company ['ve dealt with.

We moved 45 mins away and nothing was broken or missing or damaged by the end of
it.

Pony Express was amazing.

TextRank
Summary

These guys are the best.

They were very professional, fast and efficient.

Pony Express is the best moving company I've dealt with.
Pony Express was amazing.

They did great work & were very efficient.

It all took much less time than expected.

LexRank
Summary

To my surprise, the move only took 3 hours to load and unload (including drive time)
and my bill was only $500!

Pony Express is the best moving company I've dealt with.

This was my third move with Pony and they did their usual terrific job.

Table 10: Keepsake Summaries

Title

Keepsake

Text

Not a hidden gem, more like hidden silver piece but I'm still glad that I found it. Atmosphere
was great however the hint system was a bit too tempting but you gonna need it eventually.

it is a nice game but there is too much talking and technically it is like going back 5 years ago
even more and the ending is so full of cliche. Allways the same sound of footsteps or door
opening and closing whatever the place. By chance the puzzles were good!

I give it a 3 because the puzzles weren't bad and the graphics and sound were passable. This
game fails in every other way. The story, voice acting, pacing, gameplay, characterization and
the presence of bugs are all disappointing. Comparisons to The Longest Journey can't be
serious. (I haven't tried Syberia.) I might recommend this game to a 9 year old or a senior
citizen who is unfamiliar with computers, but even then I'd have my doubts.

Gist
Summary

Not a hidden gem, more like hidden silver piece but I'm still glad that I found it.
By chance the puzzles were good!

This game fails in every other way.

TextRank
Summary

Allways the same sound of footsteps or door opening and closing whatever the place.
By chance the puzzles were good!

I give it a 3 because the puzzles weren't bad and the graphics and sound were passable.
This game fails in every other way.

LexRank
Summary

Not a hidden gem, more like hidden silver piece but I'm still glad that I found it.
I give it a 3 because the puzzles weren't bad and the graphics and sound were passable.

I might recommend this game to a 9 year old or a senior citizen who is unfamiliar with
computers, but even then I'd have my doubts.

Table 11: Clever Surveys Summaries

Title

Clever Surveys

Text

Personalized predictions from survey answers.
Using cutting edge ai, our predictors answer your questions.

Need help choosing a college major or deciding what class to play in your favorite game?
Predictors are designed to make your decisions easier. Every predictor is an expert on a
particular topic. Answer some questions, and it will give you its expert opinion.

Get Predictions
Have a pressing question or hard decision? At Clever Surveys, you can create your own
predictors. Just follow the link below. Once the predictor learns from people answering a

survey, it will be ready to answer your question.

Build Your Own Predictor

Gist
Summary

Using cutting edge ai, our predictors answer your questions.

Once the predictor learns from people answering a survey, it will be ready to answer your
question.

At Clever Surveys, you can create your own predictors.

TextRank
Summary

Personalized predictions from survey answers.

Using cutting edge ai, our predictors answer your questions.

At Clever Surveys, you can create your own predictors.

Once the predictor learns from people answering a survey, it will be ready to answer your
question.

LexRank
Summary

Personalized predictions from survey answers.
Answer some questions, and it will give you its expert opinion.

Once the predictor learns from people answering a survey, it will be ready to answer your
question.

Compliance with Ethical Standards:

Funding: this work has had no funding from any source

Author Justin Lovinger declares that he has no conflict of interest. Author Iren Valova declares
that she has no conflict of interest. Author Chad Clough declares that he has no conflict of

interest.

Ethical approval: This article does not contain any studies with human participants or animals
performed by any of the authors.

References

[1] Carenini, Giuseppe, Jackie Chi Kit Cheung, and Adam Pauls. "Multidocument summarization of
evaluative text" Computational Intelligence 29, no. 4 (2013): 545-576.

[2] Fiszman, Marcelo, Thomas C. Rindflesch, and Halil Kilicoglu. "Abstraction summarization for
managing the biomedical research literature." In Proceedings of the HLT-NAACL workshop on
computational lexical semantics, pp. 76-83. Association for Computational Linguistics, 2004.

[3] Hahn, Udo, and Inderjeet Mani. "The challenges of automatic summarization." Computer 33, no. 11
(2000): 29-36.

[4] Nenkova, Ani, and Kathleen McKeown. "A survey of text summarization techniques." In Mining text
data, pp. 43-76. Springer US, 2012.

[5] Ku, Lun-Wei, Yu-Ting Liang, and Hsin-Hsi Chen. "Opinion Extraction, Summarization and Tracking

in News and Blog Corpora." In A4AI spring symposium: Computational approaches to analyzing
weblogs, vol. 100107. 2006.

[6] Goldstein, Jade, Vibhu Mittal, Jaime Carbonell, and Mark Kantrowitz. "Multi-document
summarization by sentence extraction." In Proceedings of the 2000 NAACL-ANLPWorkshop on
Automatic summarization-Volume 4, pp. 40-48. Association for Computational Linguistics, 2000.

[7] Hu, Minging, and Bing Liu. "Mining and summarizing customer reviews." In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 168-177. ACM,
2004.

[8] Yi, Jeonghee, Tetsuya Nasukawa, Razvan Bunescu, and Wayne Niblack. "Sentiment analyzer:
Extracting sentiments about a given topic using natural language processing techniques." In Data Mining,
2003. ICDM 2003. Third IEEE International Conference on, pp. 427-434. 1IEEE, 2003.

[9] Wilson, Theresa, Janyce Wiebe, and Paul Hoffmann. "Recognizing contextual polarity in phrase-level
sentiment analysis." In Proceedings of the conference on human language technology and empirical
methods in natural language processing, pp. 347-354. Association for Computational Linguistics, 2005.

[10] Pang, Bo, and Lillian Lee. "Opinion mining and sentiment analysis." Foundations and trends in
information retrieval 2, no. 1-2 (2008): 1-135.

[11] Pang, Bo, and Lillian Lee. "A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts." In Proceedings of the 42nd annual meeting on Association for
Computational Linguistics, p. 271. Association for Computational Linguistics, 2004.

[12] Nguyen, Patrick, Milind Mahajan, and Geoffrey Zweig. "Summarization of multiple user reviews in
the restaurant domain." Microsoft Research, Redmond, WA, Citeseer2007 (2007).

[13] Li, Fangtao, Chao Han, Minlie Huang, Xiaoyan Zhu, Ying-Ju Xia, Shu Zhang, and Hao Yu.
"Structure-aware review mining and summarization." In Proceedings of the 23rd international conference
on computational linguistics, pp. 653-661. Association for Computational Linguistics, 2010.

[14] Turney, Peter D. "Learning algorithms for keyphrase extraction." Information retrieval 2, no. 4
(2000): 303-336.

[15] Mihalcea, Rada, and Paul Tarau. "TextRank: Bringing order into texts." Association for
Computational Linguistics, 2004.

[16] Rastkar, Sarah, Gail C. Murphy, and Gabriel Murray. "Automatic summarization of bug reports."
IEEFE Transactions on Software Engineering 40, no. 4 (2014): 366-380.

[17] Chua, Freddy Chong Tat, and Sitaram Asur. "Automatic Summarization of Events from Social
Media." In ICWSM. 2013.

[18] Radev, Dragomir R., Timothy Allison, Sasha Blair-Goldensohn, John Blitzer, Arda Celebi, Stanko
Dimitrov, Elliott Drabek et al. "MEAD-A Platform for Multidocument Multilingual Text
Summarization." In LREC. 2004.

[19] Saggion, Horacio, and Thierry Poibeau. "Automatic text summarization: Past, present and future." In

Multi-source, multilingual information extraction and summarization, pp. 3-21. Springer Berlin
Heidelberg, 2013.

[20] Saggion, Horacio. "A robust and adaptable summarization tool." Traitement Automatique des
Langues 49, no. 2 (2008).

[21] Saggion, Horacio. "Creating Summarization Systems with SUMMA." In LREC, pp. 4157-4163.
2014.

[22] Gerani, Shima, Yashar Mehdad, Giuseppe Carenini, Raymond T. Ng, and Bita Nejat. "Abstractive
Summarization of Product Reviews Using Discourse Structure." In EMNLP, pp. 1602-1613. 2014.

[23] Erkan, Giines, and Dragomir R. Radev. "Lexrank: Graph-based lexical centrality as salience in text
summarization." Journal of Artificial Intelligence Research 22 (2004): 457-479.

[24] Maynard, Diana, Valentin Tablan, Hamish Cunningham, Cristian Ursu, Horacio Saggion, Kalina
Bontcheva, and Yorick Wilks. "Architectural elements of language engineering robustness." Natural
Language Engineering 8, no. 2-3 (2002): 257-274.

[25] Miller, George A. "WordNet: a lexical database for English." Communications of the ACM 38, no.
11 (1995): 39-41.

[26] Loria, Steven. "TextBlob: Simplified Text Processing." TextBlob. Np (2014).

[27] Gonzalez-Ibanez, Roberto, Smaranda Muresan, and Nina Wacholder. "Identifying sarcasm in
Twitter: a closer look." In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short papers-Volume 2, pp. 581-586. Association for
Computational Linguistics, 2011.

[28] Luhn, Hans Peter. "A statistical approach to mechanized encoding and searching of literary
information." IBM Journal of research and development 1, no. 4 (1957): 309-317.

[29] Sparck Jones, Karen. "A statistical interpretation of term specificity and its application in retrieval."
Journal of documentation 28, no. 1 (1972): 11-21.

[30] Chum, Ondrej, James Philbin, and Andrew Zisserman. "Near Duplicate Image Detection: min-Hash
and tf-idf Weighting." In BMVC, vol. 810, pp. 812-815. 2008.

[31] Zhang, Wen, Taketoshi Yoshida, and Xijin Tang. "A comparative study of TF* IDF, LSI and multi-
words for text classification." Expert Systems with Applications 38, no. 3 (2011): 2758-2765.

[32] Arandjelovi¢, Relja, and Andrew Zisserman. "Three things everyone should know to improve object
retrieval." In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2911-
2918. IEEE, 2012.

[33] Lewis, David D. "Reuters-21578 text categorization test collection, distribution 1.0."
http://kdd.ics.uci.edu/databases/reuters21578 (1997).

[34] Debole, Franca, and Fabrizio Sebastiani. ""An analysis of the relative hardness of Reuters-21578
subsets." Journal of the American Society for Information Science and technology 56, no. 6 (2005): 584-
596.

[35] Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. "A fast and elitist
multiobjective genetic algorithm: NSGA-IL." Evolutionary Computation, IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2 (2002): 182-197.

[36] Yang, Jihoon, and Vasant Honavar. "Feature subset selection using a genetic algorithm." In Feature
extraction, construction and selection, pp. 117-136. Springer US, 1998.

[37] Uguz, Harun. "A two-stage feature selection method for text categorization by using information
gain, principal component analysis and genetic algorithm." Knowledge-Based Systems 24, no. 7 (2011):
1024-1032.

[38] Kennedy, J.; Eberhart, R. . "Particle Swarm Optimization". Proceedings of IEEE International
Conference on Neural Networks IV. (1995) pp. 1942—1948.

[39] Rashedi, Esmat, Hossein Nezamabadi-Pour, and Saeid Saryazdi. "GSA: a gravitational search
algorithm." Information sciences 179, no. 13 (2009): 2232-2248.

[40] "Contour2D" by MHz'as - Contour2D.jpg. Licensed under CC BY-SA 3.0 via Wikimedia Commons
- https://commons.wikimedia.org/wiki/File:Contour2D.sveg#/media/File:Contour2D.svg

[41] Iversen, Gudmund R., and Helmut Norpoth. Analysis of variance. No. 1. Sage, 1987.

[42] Arcuri, Andrea, and Lionel Briand. "A hitchhiker's guide to statistical tests for assessing randomized
algorithms in software engineering." Software Testing, Verification and Reliability 24, no. 3 (2014): 219-
250.

[43] Rice, John. Mathematical statistics and data analysis. Nelson Education, 2006.

[44] Sawilowsky, Shlomo S., and R. Clifford Blair. "A more realistic look at the robustness and Type 11
error properties of the t test to departures from population normality." Psychological bulletin 111, no. 2
(1992): 352.

[45] Lin, Chin-Yew. "Rouge: A package for automatic evaluation of summaries." In Text summarization
branches out: Proceedings of the ACL-04 workshop, vol. 8. 2004.

[46] Ganesan, Kavita, ChengXiang Zhai, and Jiawei Han. "Opinosis: a graph-based approach to
abstractive summarization of highly redundant opinions." In Proceedings of the 23rd international
conference on computational linguistics, pp. 340-348. Association for Computational Linguistics, 2010.

[47] "DUC 2004 PAST DATA." Document Understanding Conferences - Past Data. NIST, 2004. Web.
30 Mar. 2017. <http://www-nlpir.nist.gov/projects/duc/data/2004 data.html>.

[48] "TIPSTER Text Summarization Evaluation Conference (SUMMAC) Computation and Language
(cmp-lg) Corpus." TIPSTER Text Summarization Evaluation Conference (SUMMAC) Computation and
Language (cmp-1lg) Corpus. The MITRE Corporation and the University of Edinburgh, 21 May 2003.
Web. 30 Mar. 2017. <http://www-nlpir.nist.gov/related projects/tipster summac/cmp_lg.html>.

