
AUTO: Supervised Learning With Full Model Search and Global
Optimization

Justin Lovingera and Iren Valovaa

aComputer and Information Science Department, University of Massachusetts Dartmouth,
North Dartmouth, MA, USA

ARTICLE HISTORY
Compiled May 1, 2023

Abstract
The AUTO algorithm is presented to incrementally build models and solve supervised
learning problems. AUTO uses traditional derivative-free optimization, like genetic
algorithms, to search the problem space of arbitrary functions. With reinforcement
learning, AUTO learns actions to guide its search process and gradually improve
performance.

A comparative analysis is presented exploring supervised learning performance
and interpretability of AUTO models. Results indicate AUTO outperforms genetic
programming and rivals multilayer perceptrons.

AUTO automatically builds models to closely match datasets without the limited
search space of traditional supervised learning. With enough time and computational
resources, AUTO can generate any function.

KEYWORDS
Mathematical Optimization; Supervised Learning; Genetic Programming; Machine
Programming

1. Introduction

Genetic programming (GP) (Poli et al., 2008; Whitley, 1994; Xing et al., 2015) is a
popular algorithm for the automatic generation of a function or program. Here, we use
the general term, machine programming (MP), to refer to a class of algorithms that
similarly generate a function or program. The infinite and complex problem domain
of MP makes it an exceptionally difficult problem. Nevertheless, the ability to more
efficiently develop programs makes MP a tempting problem to solve.

We present AUTO Universal Task Optimization (AUTO). AUTO uses derivative-free
optimization, like genetic algorithms (GA) (Whitley, 1994), to create a function mapping
a set of given inputs to a set of output values. A set of unit tests can evaluate the
effectiveness of this function and return a objective value to improve later iterations. A
novel technique that defines functions as a set of stacked partial function layers allows

CONTACT Justin Lovinger. Email: auto@justinlovinger.com

Figure 1. AUTO Solution to XOR

derivative-free optimization to explore the space of functions without resorting to graph
based methods, as is popular in MP. A solution to the XOR problem, generated by
AUTO, is depicted in Figure 1. The first layer contains a - operation, the second contains
a max and and operation, and the final layer contains two x and two y terminals.

In all supervised learning (SL) problems, there is a theoretically optimal function f∗
mapping a set of inputs X to a set of outputs O. The goal of any SL algorithm is
to find f∗ using evidence from a dataset. Most SL models provide a function fm with
parameters that can be adjusted to learn a trained model function f ′m that is closer to
f∗. This allows for fast training. However, for the vast majority of problems f ′m 6= f∗ for
any initialization or training procedure, because the initial function fm does not have
the right form or parameters to ever equal f∗.

MP can generate arbitrary functions mapping inputs to outputs. As such, MP can
perform SL (Espejo et al., 2009). Furthermore, MP can theoretically generate functions
with equal or greater accuracy than any other SL model because MP can generate
f ′mp = f∗ with optimal training, where f ′mp is a function generated by MP, even when
f ′mp = f ′m = f∗ for another SL model f ′m. As in standard SL, outputs from a function
generated by MP are compared to known target values, and error is fed back as an
objective value to improve later iterations.

Unlike existing works, AUTO uses reinforcement learning (RL) to build programs and ML
models. AUTO RL actions transform or extend a model, adding or changing operators,
inputs, and parameters. The AUTO RL agent is like a human programmer refactoring
code to improve performance and correctness.

The next section discusses the motivation for AUTO. Section 3 presents a discussion of
related works. Section 4 details the AUTO algorithm. Section 5 provides a comparative
analysis of AUTO on benchmark SL problems. Section 6 concludes.

2. Motivation

Machine programming (MP) techniques, like AUTO, can produce effective models
compact enough for human interpretation. As such, AUTO is an effective tool for model-
based fault diagnosis (Peng et al., 2020; W.-X. Yang, 2006; Zhang et al., 2005). AUTO
can learn a model to predict faults in a real life system, such as rotating machinery. The
model can then be examined to determine root causes, and the system can be improved
to reduce future faults.

Unlike most machine learning techniques, AUTO does not always use all features or
connect all features to all classes. AUTO can therefore produce compact models with
fast activation times, using only a few comparisons in the best case.

2

Figure 2. GP Tree (BAxelrod, n.d.)

With AUTO, we further the state-of-the-art in MP and ML, providing more effective
models, better fault diagnosis, and more accurate prediction.

3. Related Works

MP is best known for the genetic programming (GP) method (Poli et al., 2008; Whitley,
1994; Xing et al., 2015). In brief, GP is a genetic algorithm (GA) (Deb et al., 2002;
Lovinger et al., 2014; Uğuz, 2011; J. Yang & Honavar, 1998) acting on a graph, or tree,
instead of a binary string. Figure 2 depicts a GP tree and its corresponding equation.
Terminal leaf nodes are variables or constants. Non-leaf nodes are operators using
terminals or the outputs of other operators. Every iteration, GP evaluates the fitness of
each tree, and combines the most fit individuals to generate a new population of trees.
Individuals can be combined with an analogy for GA crossover: a node in each parent
tree is selected, and that node is replaced with the selected node and subtree of the
other parent. Mutation can occur by selecting a node, and replacing that node with a
randomly generated subtree.

In reinforcement learning (RL), agents take actions to maximize reward (Sutton & Barto,
2018). Unlike supervised learning, RL does not need labeled samples. Instead, RL agents
train while acting by examining rewards associated with their actions. RL has been used
to solve optimization problems (Chen et al., 2021; Mohamed et al., 2020; Zou et al.,
2021).

4. Methodology

AUTO builds functions incrementally. Every iteration, a function f is modified by an
action A∗, resulting in a new function. AUTO represents f as a series of stacked partial
function layers. Each layer Li has a number of symbols s(Li) ≥ 1, and requires a number
of arguments a(Li) ≥ 0. AUTO builds f by substituting symbols from layer Li into
arguments of Li−1. All layers Li ∈ L must satisfy

s(Li) = a(Li−1) ∧ a(Li) = s(Li+1) (1)

where a(L0) = 1 and s(L|L|+1) = 0. That is to say, the first layer must have 1 symbol,
and the last layer must have 0 arguments. Layer Li is valid iff (1). Figure 3 depicts

3

Figure 3. Building f(x, y) = (x− y) + x from AUTO Layers

the process of building f from AUTO layers. Layers begin as encoded strings. Each
layer string is decoded into a partial function. Each layer, except for the last, requires
arguments from the next layer. Finally, symbols in each layer are substituted into the
previous layer, forming f .

The best action for an iteration depends on f and an objective function F . Our AUTO
algorithm implements 2 actions: add layer and replace layer. An action to delete the last
layer was explored but found unnecessary alongside multiple tries.

The add layer action replaces the last layer Ln with a new layer L′n, and adds an
additional layer L′n+1. Ln must be substituted because a(Ln) = 0 and a(L′n) must be
> 0 to allow another layer. The add layer action allows exploration of larger programs.

The replace layer action selects a layer Li, and replaces it with a new layer L′i. The
replace layer action escapes local minima that could otherwise result when L′i is optimal
only after more layers are added.

A special initialize action creates a layer with 1 terminal. Initialize is performed only
once, on the first iteration.

Algorithm 1 presents the main AUTO loop. Multiple tries allow continued exploration of
programs of a variety of sizes. AUTO retains reinforcement learning information across
tries, improving performance for each subsequent try.

Algorithm 1 AUTO Algorithm
Given maximum number of tries nt

Given maximum number of iterations per try ni

Given optimization procedure O — See Sections 4.1, 4.3

f∗ ← best 1 layer function using O
loop

f ← best 1 layer function using O
loop

A∗ ← best action — See Section 4.2
f ← A∗(f) using O
if F (f) > F (f∗) do

f∗ ← f
end if

until ni

until nt

return f∗

4

4.1. Optimizing Layers

Every action requires finding one or more replacement layers L′i. Because L′i must satisfy
(1), we know s(L′i) and a(L′i). As such, L′i can be encoded as a fixed length string.
Without the need for variable length encoding, a vast variety of optimization algorithms
can find L′i, such as genetic algorithms (Deb et al., 2002; Lovinger et al., 2014; Uğuz,
2011; J. Yang & Honavar, 1998), particle swarm optimization (Kennedy, 2011), or hill
climbing (Goldfeld et al., 1966; Mitchell et al., 1993; Xiao & Dunford, 2004).

The add layer action requires finding two layers, L′i and L′i+1, simultaneously. The
selection of L′i is highly dependent on L′i+1, because the symbols in L′i+1 are arguments
for L′i. Recursive optimization can effectively search for the optimal combination of
L′i and L′i+1. Recursive optimization depends on two optimizers. The first optimizer
selects L′i for evaluation. For every selected L′i, the second optimizer searches for L′i+1 to
maximize F (f ′), where f ′ is f with substituted layers L′i and L′i+1. This process can be
implemented as a decoding function for the first optimizer that decodes a binary string
into L′i and runs an optimizer that returns L′i+1.

4.2. Selecting Actions

Selecting a random action A is trivial to implement. Although selecting a poor action A
cannot decrease objective value F (f∗), selecting the best action A∗ optimally increases
F (f∗). Reinforcement learning (RL) allows AUTO to select A∗.

The RL agent can be simply specified as having a single state, a replace layer action for
every layer, and an add layer action. Without continuous states or actions, or the need
for delayed reward, a simple reward table is sufficient. The reward table R maps action
to reward. Every iteration, A∗ = argmaxAR(A).

After every iteration, R(A∗) is updated with a new reward r∗. Because our goal in
applying A∗ is to improve F (f), r∗ = F (f)− F (f t−1), where f t−1 is the function from
the previous iteration. Standard RL update rules adjust R(A∗) towards r∗:

R(A∗)← R(A∗) + λ(r∗ −R(A∗)) (2)

where 0 < λ ≤ 1 is the reward table update rate. (2) allows incrementally learning the
average reward for each action.

When a new action A′ is added to R, it must be given an initial reward value r0. The
choice of r0 affects how frequently A′ is selected before the true R(A′) is learned. We
empirically select r0 = 0.5. To encourage exploration, a reward growth parameter rg ≥ 0
can be selected. Every iteration, R(A) ← R(A) + rg∀A ∈ R. A small rg allows the
RL agent to eventually explore previously abandoned actions. We empirically select
rg = 0.01.

4.3. Decoding Binary Strings

Most derivative-free optimizers, like GA, represent parameters they optimize as binary
strings. As such, we need to decode binary strings into lists of operators and terminals
for AUTO layers.

Given a set of operators and terminals S, A simple method to select k items from S, is

5

to treat each sequence of b bits as an index, where b is the least number of bits required
to represent |S|− 1 and |S| is the length of set S. Each sequence of b bits can be trivially
converted into an integer index j, giving the jth item of S. Repeating for each sequence
of b bits provides a list of k items from a binary string of length k ∗ b.

A sequence of individual indices can present problems when items must pass constraints,
like (1). With constraints, many binary strings are invalid using the simple indices method.
Constraints can be resolved by treating the entire bit string as a single index j to a list
of k-permutations of set S, with repetition. A modified jth k-permutation algorithm
can find the jth k-permutation passing an ordinal constraint function C using a binary
search. The constraint function for the replace layer action Cr(pj) = a(pj) − s(Li+1),
where pj is the jth k-permutation represented as a layer. Note that we can trivially
ensure s(pj) = a(Li−1) by setting k = a(Li−1). The constraint function for the add layer
action

Ca(pj) =
{
−1 a(pj) = 0
0 a(pj) > 0

(3)

Algorithm 2 presents the procedure for resolving C. Note that S must be sorted in
ascending order of arguments, and terminals are treated as having 0 arguments.

Algorithm 2 Constrained ith k-Permutation
if C(pj) = 0 do

return pj

else if C(pj) > 0 do
return search(0, j − 1)

else — C(pj) < 0
return search(j + 1, |S| − 1)

end if
procedure search(jl, ju)

let j′ = b(jl + ju)/2c
if C(pj′) = 0 do

return pj′

else if C(pj′) > 0 do
return search(jl, j′ − 1)

else — C(pj′) < 0
return search(j′ + 1, ju)

end if
end procedure

Although multiple indices can produce the same constrained k-permutation, binary
search distributes these duplicates among the space of constrained k-permutations,
minimising bias.

5. Supervised Learning Analysis and Comparison

Ground truth labels and targets make supervised learning an effective benchmark for
machine programming and AUTO (D’Angelo et al., 2019; Hrnjica & Danandeh Mehr,
2018; Khanchi et al., 2018).

6

5.1. Datasets

Logical AND, OR, and XOR datasets provide easy to interpret results to demonstrate
AUTO. All logical datasets are presented in their 2-dimensional variant with 1 regression
target.

The well known iris dataset (Lichman, 2013) contains real value attributes describing
various characteristics of a flower: sepal and petal width and length. The goal is to
classify a flower into three types of iris. The iris dataset is low dimensional and relatively
easy to classify.

California housing (CH) is a regression dataset (Huang et al., 2005, 2006; Pace, n.d.;
Pace & Barry, 1997) predicting house value based on neighborhood and house statistics.
Attributes are obtained using all block groups in California from the 1990 census.

The US postal service hand-written digit dataset (USPS) (Hull, 1994) contains 16x16 grey-
scale images of hand written digits, gathered at the Center of Excellence in Document
Analysis and Recognition (CEDAR) at SUNY Buffalo, as part of a project sponsored by
the US postal service. Images are scanned from post office mail and contain a multitude
of writers and styles. This high dimensional image dataset is significantly more difficult
than iris.

The number of samples in each dataset, number of samples in the training set, attributes
in each sample, and problem type for each benchmarked dataset is presented in Table 1.
For classification datasets, the training set is given an even distribution of classes.

Table 1. Benchmark Datasets

Dataset Type Samples Training
Samples

Attributes Classes /
Outputs

AND Regression 4 4 2 1
OR Regression 4 4 2 1
XOR Regression 4 4 2 1
Iris Classification 150 90 4 3
CH Regression 20640 500 8 1
USPS Classification 11000 500 256 10

5.2. Models

Our configuration for each model used in this comparison is presented.

5.2.1. AUTO

AUTO runs for 10 tries and 25 iterations per try. It uses a genetic algorithm (GA) for
layer optimization. The GA runs for 25 iterations, has a population of 12 chromosomes,
a crossover chance of 0.7, a bit-flip mutation chance of 0.02, uses tournament selection
with 2 competitors, and one-point crossover. The second optimizer, required for the add
layer action, runs for 6 iterations and has a population of 3 chromosomes.

The objective function F for AUTO optimization is F (f,X,T) = 1−mae(f(X),T),
where f is the function learned by AUTO, X is an attribute matrix, T is a target matrix,

7

and mae is the mean absolute error function. Mean absolute error is used instead of
mean squared error to avoid floating point overflow and because AUTO does not require
a smooth gradient. Similar error functions, such as cross entropy, can take the place of
mae.

The following operators are available for AUTO: x+ y, x− y, x ∗ y, x/y, xy, max(x, y),
and x > y, where x and y are arguments. x/0 = 1 to prevent division by zero errors.
x > y returns 1 for true and 0 for false. A selection of 100 constants, sampled at regular
intervals from a beta distribution fitting training set attributes, is provided as terminals,
in addition to a terminal for each attribute of an input vector.

For classification problems, labels are converted into one-hot target vectors ~t, with a
value of 1 for the component corresponding to the given label, and 0 for components
corresponding to all other classes; vector length |~t| = nc, where nc is the number of
classes. AUTO cannot directly output a vector because our set of operators for AUTO
consists of only scalar functions. Instead, AUTO learns one function for each component
of ~t. The AUTO output f(~x) is formed by concatenating the output of each individual
AUTO function fi(~x), where ~x is an attribute vector.

5.2.2. Genetic Programming

Our genetic programming (GP) model runs for 250 iterations, has a population of 300
trees, a crossover chance of 0.5, mutation chance of 0.1, uses tournament selection with
2 competitors, one-point crossover, and a half-and-half scheme to generate the initial
population. GP has access to the same operators and terminals as AUTO. As with
AUTO, each label is converted into a one-hot vector, and GP learns one function for
each component of the one-hot vector.

5.2.3. Multilayer Perceptron

Our multilayer perceptron (MLP) (Lovinger, 2018) model uses softplus, f(x) = ln(1+ex),
for hidden layers. ReLU and its softplus variant are effective in practice (Glorot et al.,
2011; Maas et al., 2013; Tóth, 2013). Softmax output (Goodfellow et al., 2016) is used
for classification datasets, and linear output is used for regression datasets. A BFGS
optimizer (Broyden, 1970a; Broyden, 1970b; Dai, 2002; Fletcher, 1970; Goldfarb, 1970;
Nocedal & Wright, 2006; Shanno, 1970), utilizing an approximation of second derivative
information for improved performance, with Wolfe line search (Jiang & Jian, 2019;
Nocedal & Wright, 2006; Yousif, 2020) and first-order-change initial step size (Nocedal
& Wright, 2006) trains this model. Limited-memory BFGS (Bollapragada et al., 2018;
Liu & Nocedal, 1989; Nocedal & Wright, 2006) trains this model on the USPS dataset
due to a larger number of parameters. For each dataset, we start with 1 hidden neuron
and increment by 1 until training error increases. The number of hidden neurons that
minimizes training error is used. MLP uses 4 hidden neurons on Iris, 6 on CH, and 7 on
USPS.

5.3. Results

Table 2 presents accuracy on training and testing sets for datasets in Section 5.1 and
models in Section 5.2. Regression datasets present mean squared error in place of accuracy.
All models achieve perfect accuracy on logical AND, OR, and XOR datasets.

8

Table 2. Supervised Learning Comparison

Dataset Model Train Acc/Err Test Acc/Err

Iris AUTO 100.00% 95.00%
GP 82.22% 85.00%
MLP 98.89% 95.00%

CH AUTO 0.108 0.106
GP 0.130 0.128
MLP 0.056 0.127

USPS AUTO 45.80% 37.06%
GP 12.00% 11.43%
MLP 99.20% 77.84%

AUTO proves its effectiveness, outperforming GP on all datasets, and matching or
outperforming MLP on all datasets except USPS. High dimensional image recognition,
as seen in USPS, proves difficult for both machine programming (MP) models, AUTO
and GP. However, AUTO achieves over 3 times higher accuracy than GP.

AUTO is limited to 250 iterations across 10 tries for this experiment. However, as seen
in Table 3, AUTO can continue to significantly improve its model, even close to this
limit. More tries and iterations could yield further improvements.

Table 3. Tries and iterations when AUTO error changes on USPS class 3.

Try Iteration ξ

1 1 0.116
1 2 0.100
1 12 0.092
1 14 0.088
1 15 0.082
1 21 0.080
7 22 0.078
9 24 0.056
9 25 0.042

5.3.1. AUTO Functions

Table 4 examines functions learned by AUTO for datasets presented in Section 5.1.
Number of symbols ns in each function is presented, and functions of less than 25 symbols
are displayed. Numeric terminals are rounded to 2 decimal places. AUTO function for
class c is given by function fc. Training error ξ for each function is also presented.

Even with the simple AND, OR, and XOR datasets, AUTO generates interesting
solutions. Multiplication solves AND, the max operator solves OR, and XOR is solved
by the max of inverted subtraction between arguments.

Functions for the Iris dataset demonstrate which classes are easy to predict, and which

9

Table 4. AUTO Functions

Datasetns Function ξ

AND 3 f1(~x) = x1 ∗ x2 0
OR 3 f1(~x) = max(x2, x1) 0
XOR 7 f1(~x) = max(x2 − x1, x1 − x2) 0
Iris 3 f1(~x) = −0.55 > x3 0

59 f2(~x) = ... 0
47 f3(~x) = ... 0

CH 51 f1(~x) = ... 0.108
USPS 15 f1(~x) = (x102 > −1.21) > (x1.7

120 − x115 ∗ −0.93) ∗ x255 + 3.56 0.076
11 f2(~x) = max(−1.08, (x47 > x161) ∗ x130 + x31 > 2.36) 0.076
23 f3(~x) = −0.66 > max(−0.71,max(((x175 > x73) >

x91 − x55) + x37,−1.17 ∗ x181 + (−0.83 ∗ −0.8)2.96))
0.042

13 f4(~x) = ((x176 > 0.27) ∗ 0.87 ∗ x171 − 0.1)−0.89 > x153 0.082
97 f5(~x) = ... 0.052
19 f6(~x) = x116− ((0.180.87 + max(x168, x96))− (x60 + x147 + x112)) >

2.06−−1.06
0.056

49 f7(~x) = ... 0.072
35 f8(~x) = ... 0.062
15 f9(~x) = (−0.83 > x62)/x0.74

15 > (x238 +−1.08 > −1.14 + x124) 0.088
35 f10(~x) = ... 0.076

are difficult. The first class is perfectly predicted with a single inequality, simply checking
if pedal length is greater than −0.549. Note that attributes are normalized to a mean of
0 and standard deviation of 1. The second and third classes are also perfectly predicted,
but require significantly larger functions. The second class is harder to predict than the
third, requiring 12 more symbols.

As a regression dataset, CH requires many symbols to achieve low error. However, the
6th attribute is not used in the function generated by AUTO:
((−0.965/(((((−0.710 > max(−0.836, (((x1 > −0.258)/(x3 − x3))x4))) + x4)
∗(−0.999− (−0.597max(−0.847,(x4∗max(x4,(−0.226∗x5)))))))−0.123)(−0.920−−0.973)−−0.994))
−(max(x7, (x1 + max(x2,−0.799)))− x7)) + x8

In the USPS dataset, we see a loose correlation between number of symbols and error.
Functions 1, 2, 4, and 9 have few symbols and noticeably higher error than functions 5,
7, and 8, which have many symbols. Functions 3 and 6 are outliers with relatively few
symbols and low error. This image recognition dataset requires complex functions for
accurate prediction, but some classes are still easier to predict than other.

5.4. Performance Analysis

Each function f built by AUTO requires only as much computation as the sum of its
operators. As such, time complexity is constant, O(1), with regard to the number of
attributes in a dataset. AUTO uses only the attributes required to achieve high accuracy.
AUTO has no upper bound on the number of operators in f , providing a theoretical
time complexity upper bound of O(∞). However, f is built incrementally, beginning

10

with a single terminal in one layer. This upper bound requires ∞ iterations to build.

The supervised learning objective function F , given in Section 5.2.1, requires calculating
the mean squared error of f on a training set. Time complexity of every objective
evaluation is O(n), where n is the number of samples in a given training set. Every
AUTO iteration performs an action requiring a number of objective evaluations depending
on the optimizer. The total number of evaluations depends on how many AUTO iterations
are required to find f with sufficient objective value F (f).

Our comparison AUTO model uses a genetic algorithm requiring 300 objective evaluations
for the initialize and replace layer actions and 14400 evaluations for the add layer action.
It runs for 250 AUTO iterations across 10 tries, requiring 75000 to 3600000 total
evaluations, depending on actions taken.

6. Conclusion

By utilizing existing optimization algorithms to incrementally build a function, AUTO
furthers the state-of-the-art in machine programming. Reinforcement learning allows
AUTO to effectively mutate a function, adding depth and replacing operators and
terminals. With this function mutation scheme, AUTO outperforms traditional genetic
programming (GP).

With supervised learning as a benchmark, AUTO proves its ability to effectively gener-
ate functions. AUTO requires minimal configuration, solving problems independently,
without user supervision or hyperparameter adjustment. AUTO functions are compact
and sparse, providing excellent performance once training is complete.

AUTO scales exceptionally well with computational resources. AUTO can theoretically
generate any function, limited only by available operators and terminals. With enough
time, AUTO can perfectly solve any problem.

Functions generated by AUTO are interpretable, providing useful insights into the nature
of a problem. We can learn by seeing selected operators, numbers of symbols, ignored
attributes, and functions themselves. Imagine a machine learning expert called in to
diagnose the high fault rate of an assembly line. An AUTO generated function could
not only predict faults, but pinpoints factors leading to those faults, allowing engineers
to fix root causes.

With only scalar operators and terminals, AUTO must divide its time between multiple
functions to form a target vector. This limitation is especially pronounced on datasets
with many classes, as seen with the USPS dataset in Section 5.3. AUTO can be extended
with vector operators and terminals, directly outputting a target vector and focusing all
iterations on improving performance.

AUTO is a machine programming platform. New optimizers and reinforcement learning
models can improve performance. New actions can extend AUTO. New operators can
solve different problem.

Disclosure Statement

The authors report there are no competing interests to declare.

11

References

BAxelrod. (n.d.). A function represented as a tree structure. https://en.wikipedia.org/
wiki/Genetic_programming#/media/File:Genetic_Program_Tree.png

Bollapragada, R., Nocedal, J., Mudigere, D., Shi, H.-J., & Tang, P. T. P. (2018). A
progressive batching L-BFGS method for machine learning. International Conference
on Machine Learning, 620–629.

Broyden, C. G. (1970a). The convergence of a class of double-rank minimization al-
gorithms 1. General considerations. IMA Journal of Applied Mathematics, 6 (1),
76–90.

Broyden, C. G. (1970b). The convergence of a class of double-rank minimization algo-
rithms: 2. The new algorithm. IMA Journal of Applied Mathematics, 6 (3), 222–231.

Chen, J., Alnowibet, K., Annuk, A., & Mohamed, M. A. (2021). An effective distributed
approach based machine learning for energy negotiation in networked microgrids.
Energy Strategy Reviews, 38, 100760. https://doi.org/https://doi.org/10.1016/j.esr.
2021.100760

D’Angelo, G., Pilla, R., Tascini, C., & Rampone, S. (2019). A proposal for distinguishing
between bacterial and viral meningitis using genetic programming and decision trees.
Soft Computing, 23 (22), 11775–11791.

Dai, Y.-H. (2002). Convergence properties of the BFGS algoritm. SIAM Journal on
Optimization, 13 (3), 693–701.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (2),
182–197.

Espejo, P. G., Ventura, S., & Herrera, F. (2009). A survey on the application of genetic
programming to classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 40 (2), 121–144.

Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer
Journal, 13 (3), 317–322.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In G.
Gordon, D. Dunson, & M. Dudík (Eds.), Proceedings of the fourteenth international
conference on artificial intelligence and statistics (Vol. 15, pp. 315–323). PMLR.
https://proceedings.mlr.press/v15/glorot11a.html

Goldfarb, D. (1970). A family of variable-metric methods derived by variational means.
Mathematics of Computation, 24 (109), 23–26.

Goldfeld, S. M., Quandt, R. E., & Trotter, H. F. (1966). Maximization by quadratic
hill-climbing. Econometrica: Journal of the Econometric Society, 541–551.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. http:
//www.deeplearningbook.org

Hrnjica, B., & Danandeh Mehr, A. (2018). Optimized genetic programming applications:
Emerging research and opportunities: Emerging research and opportunities. IGI global.

12

https://en.wikipedia.org/wiki/Genetic_programming#/media/File:Genetic_Program_Tree.png
https://en.wikipedia.org/wiki/Genetic_programming#/media/File:Genetic_Program_Tree.png
https://doi.org/10.1016/j.esr.2021.100760
https://doi.org/10.1016/j.esr.2021.100760
https://proceedings.mlr.press/v15/glorot11a.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Huang, G.-B., Chen, L., Siew, C. K., & others. (2006). Universal approximation using
incremental constructive feedforward networks with random hidden nodes. IEEE
Trans. Neural Networks, 17 (4), 879–892.

Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2005). A generalized growing
and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE
Transactions on Neural Networks, 16 (1), 57–67.

Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 16 (5), 550–554.

Jiang, X., & Jian, J. (2019). Improved fletcher–reeves and dai–yuan conjugate gradient
methods with the strong wolfe line search. Journal of Computational and Applied
Mathematics, 348, 525–534.

Kennedy, J. (2011). Particle swarm optimization. In C. Sammut & G. I. Webb (Eds.),
Encyclopedia of machine learning (pp. 760–766). Springer US. https://doi.org/10.
1007/978-0-387-30164-8_630

Khanchi, S., Vahdat, A., Heywood, M. I., & Zincir-Heywood, A. N. (2018). On botnet
detection with genetic programming under streaming data label budgets and class
imbalance. Swarm and Evolutionary Computation, 39, 123–140.

Lichman, M. (2013). UCI machine learning repository. University of California, Irvine,
School of Information; Computer Sciences. http://archive.ics.uci.edu/ml

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45 (1), 503–528.

Lovinger, J. (2018). A tutorial on supervised learning from the perspective of mathematical
optimization [MS Thesis]. University of Massachusetts Dartmouth.

Lovinger, J., Valova, I., Rogers, M., Nadeau, R., & Gueorguieva, N. (2014). Harness-
ing mother nature: Optimizing genetic algorithms for adaptive systems. Procedia
Computer Science, 36, 523–528.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. Proc. ICML, 30 (1), 3–9.

Mitchell, M., Holland, J., & Forrest, S. (1993). When will a genetic al-
gorithm outperform hill climbing. In J. Cowan, G. Tesauro, & J. Al-
spector (Eds.), Advances in neural information processing systems (Vol. 6,
pp. 51–58). Morgan-Kaufmann. https://proceedings.neurips.cc/paper/1993/file/
ab88b15733f543179858600245108dd8-Paper.pdf

Mohamed, M. A., Jin, T., & Su, W. (2020). Multi-agent energy management of
smart islands using primal-dual method of multipliers. Energy, 208, 118306.
https://doi.org/https://doi.org/10.1016/j.energy.2020.118306

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business
Media.

Pace, R. K. (n.d.). California housing. http://www.dcc.fc.up.pt/~ltorgo/Regression/
cal_housing.html

Pace, R. K., & Barry, R. (1997). Sparse spatial autoregressions. Statistics & Probability
Letters, 33 (3), 291–297.

13

https://doi.org/10.1007/978-0-387-30164-8_630
https://doi.org/10.1007/978-0-387-30164-8_630
http://archive.ics.uci.edu/ml
https://proceedings.neurips.cc/paper/1993/file/ab88b15733f543179858600245108dd8-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/ab88b15733f543179858600245108dd8-Paper.pdf
https://doi.org/10.1016/j.energy.2020.118306
http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

Peng, B., Wan, S., Bi, Y., Xue, B., & Zhang, M. (2020). Automatic feature extraction
and construction using genetic programming for rotating machinery fault diagnosis.
IEEE Transactions on Cybernetics, 51 (10), 4909–4923.

Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A field guide to genetic
programming. Lulu. http://www.gp-field-guide.org.uk

Shanno, D. F. (1970). Conditioning of quasi-newton methods for function minimization.
Mathematics of Computation, 24 (111), 647–656.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Tóth, L. (2013). Phone recognition with deep sparse rectifier neural networks. 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, 6985–6989.
https://doi.org/10.1109/ICASSP.2013.6639016

Uğuz, H. (2011). A two-stage feature selection method for text categorization by using
information gain, principal component analysis and genetic algorithm. Knowledge-
Based Systems, 24 (7), 1024–1032.

Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4 (2), 65–85.

Xiao, W., & Dunford, W. G. (2004). A modified adaptive hill climbing MPPT method for
photovoltaic power systems. 2004 IEEE 35th Annual Power Electronics Specialists
Conference (IEEE Cat. No.04CH37551), 3, 1957–1963. https://doi.org/10.1109/
PESC.2004.1355417

Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student
final performance prediction model through interpretable genetic programming:
Integrating learning analytics, educational data mining and theory. Computers in
Human Behavior, 47, 168–181.

Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. IEEE
Intelligent Systems and Their Applications, 13 (2), 44–49.

Yang, W.-X. (2006). Establishment of the mathematical model for diagnosing the engine
valve faults by genetic programming. Journal of Sound and Vibration, 293 (1-2),
213–226.

Yousif, O. O. O. (2020). The convergence properties of RMIL+ conjugate gradient
method under the strong wolfe line search. Applied Mathematics and Computation,
367, 124777.

Zhang, L., Jack, L. B., & Nandi, A. K. (2005). Fault detection using genetic programming.
Mechanical Systems and Signal Processing, 19 (2), 271–289.

Zou, H., Tao, J., Elsayed, S. K., Elattar, E. E., Almalaq, A., & Mohamed, M. A. (2021).
Stochastic multi-carrier energy management in the smart islands using reinforcement
learning and unscented transform. International Journal of Electrical Power & Energy
Systems, 130, 106988. https://doi.org/https://doi.org/10.1016/j.ijepes.2021.106988

14

http://www.gp-field-guide.org.uk
https://doi.org/10.1109/ICASSP.2013.6639016
https://doi.org/10.1109/PESC.2004.1355417
https://doi.org/10.1109/PESC.2004.1355417
https://doi.org/10.1016/j.ijepes.2021.106988

	Introduction
	Motivation
	Related Works
	Methodology
	Optimizing Layers
	Selecting Actions
	Decoding Binary Strings

	Supervised Learning Analysis and Comparison
	Datasets
	Models
	AUTO
	Genetic Programming
	Multilayer Perceptron

	Results
	AUTO Functions

	Performance Analysis

	Conclusion
	Disclosure Statement
	References

